ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

達(dá)拉特旗黃河南岸鹽堿化土壤不同含鹽量估算模型對(duì)比
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(2021GG0369),、國(guó)家自然科學(xué)基金項(xiàng)目(52369009),、鄂爾多斯市科技局項(xiàng)目(2021EEDSCXSFQZD01)和內(nèi)蒙古自然科學(xué)基金項(xiàng)目(2023MS05024)


Comparison of Different Salinity Estimation Models for Salinized Soils on South Bank of Yellow River in Dalat Banner
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    內(nèi)蒙古自治區(qū)鄂爾多斯市達(dá)拉特旗黃河南岸由于氣候干旱,降水量少,,年蒸發(fā)量遠(yuǎn)大于年降水量,,靠近黃河地下水位高,導(dǎo)致土壤鹽漬化問(wèn)題突出,。以達(dá)拉特旗黃河南岸鹽堿地為研究對(duì)象,,基于Sentinel-1、Sentinel-2,、Landsat-8和SRTM DEM多源數(shù)據(jù),,采取相關(guān)性分析和連續(xù)變量投影結(jié)合索套回歸(Lasso)、隨機(jī)森林回歸(Random forset,,RF),、輕量梯度提升機(jī)模型(Light gradient boosting machine,LightGBM),、極端梯度提升模型(Extreme gradient boosting,,XGBoost)、一維卷積神經(jīng)網(wǎng)絡(luò)(One dimensional convolutional neural networks,,1DCNNs),、深度神經(jīng)網(wǎng)絡(luò)(Deep neural network,DNN)6種模型進(jìn)行春季裸土期與植被覆蓋期土壤含鹽量估算,。結(jié)果表明:XGBoost模型精度最高,,春季裸土期、植被覆蓋期測(cè)試集決定系數(shù)(R2)為0.76,、0.58;均方根誤差(RMSE)為5.76,、7.22 g/kg;平均絕對(duì)誤差(MAE)為3.38、4.33 g/kg。多源遙感數(shù)據(jù)結(jié)合變量篩選方法利用XGBoost模型揭示研究區(qū)不同季節(jié)土壤鹽分空間分布最有效,,含鹽量反演結(jié)果與野外實(shí)際調(diào)查分析結(jié)果基本吻合,。變量重要性分析表明春季裸土期、植被覆蓋期重要反演因子分別為:鹽分指數(shù)(48.3%),、地形因子(33.8%);植被指數(shù)(22%),、地形因子(47.9%)。本研究為達(dá)拉特旗黃河南岸鹽堿地遙感反演提供了有效方法,,為春季裸土期與植被覆蓋期鹽堿化土壤監(jiān)測(cè)及預(yù)防提供了理論依據(jù),。

    Abstract:

    The south bank of the Yellow River in Dalate Banner, Ordos City, Inner Mongolia Autonomous Region, is characterized by arid climate, low precipitation, annual evaporation much larger than annual precipitation, and the proximity to the Yellow River leads to a high water table, which leads to prominent soil salinization. Taking the saline soil along the south bank of the Yellow River in Dalate Banner as the research object, based on the multi-source data of Sentinel-1, Sentinel-2, Landsat-8 and SRTM DEM, correlation analysis and continuous variable projection combined with Lasso regression (Lasso), random forest regression (RF), light gradient boosting machine model (LightGBM), extreme gradient boosting (XGBoost), one dimensional convolutional neural networks (1DCNNs), and deep neural network (DNN) were used to estimate soil salinity during spring bare soil period and vegetation cover period. The results showed that the XGBoost model had the highest accuracy, and the coefficients of determination (R2) of the test sets were 0.76 and 0.58 for the spring bare soil period and vegetation cover period, the root mean square errors (RMSE) were 5.76 g/kg and 7.22 g/kg, and the mean absolute errors (MAE) were 3.38 g/kg and 4.33 g/kg. The combination of multi-source remote sensing data and the variable screening method by using the XGBoost model revealed that the soil salinity spatial distribution in different seasons in the study area was the most effective, and the results of salinity inversion basically coincided with the results of the actual field investigation and analysis. The variable importance analysis showed that the important inversion factors in the spring bare soil period and vegetation cover period were salinity index (48.3%) and topography factor (33.8%), vegetation index (22%) and topography factor (47.9%), respectively. The research result can provide an effective method for remote sensing inversion of saline and alkaline land on the south bank of the Yellow River in Dalat Banner, and provide a theoretical basis for monitoring and preventing salinized soil in the spring bare soil period and vegetation cover period.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉霞,胡宇,張圣微,白燕英,張歡.達(dá)拉特旗黃河南岸鹽堿化土壤不同含鹽量估算模型對(duì)比[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(10):360-370. LIU Xia, HU Yu, ZHANG Shengwei, BAI Yanying, ZHANG Huan. Comparison of Different Salinity Estimation Models for Salinized Soils on South Bank of Yellow River in Dalat Banner[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):360-370.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-05-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼