ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO-DCL的復(fù)雜環(huán)境油茶果遮擋檢測與計數(shù)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFE0122600)、湖南省教育廳重點科研項目(22A0423)和湖南省自然科學基金項目(2023JJ60267,、2022JJ50073)


Camellia oleifera Fruits Occlusion Detection and Counting in Complex Environments Based on Improved YOLO-DCL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決復(fù)雜環(huán)境中油茶果因遮擋造成的檢測與計數(shù)難題,,提出了一種基于雙主干網(wǎng)絡(luò)(Dual-backbone)和連續(xù)注意力特征融合模塊(Consecutive attention feature fusion,CAFF)的檢測模型,。該模型結(jié)合了兩種不同主干網(wǎng)絡(luò)的優(yōu)勢,實現(xiàn)了對不同特征的高效提取,。此外,,設(shè)計了雙輸入單輸出的連續(xù)注意力特征融合模塊,取代了傳統(tǒng)的拼接操作(Concat),,優(yōu)化了多尺度特征信息的融合策略,。為了在精度與模型內(nèi)存占用量之間取得平衡,采用了幻影卷積模塊(Ghostconv),,并去除了空間金字塔池化層(Spatial pyramid pooling fast,,SPPF),加快了訓練速度,,減少了參數(shù)量,。改進后的YOLO-DCL(YOLO dual-backbone & consecutive attention feature fusion & lightweight)模型在各類遮擋檢測任務(wù)上表現(xiàn)優(yōu)秀,平均精度均值達到92.7%,,精確率為90.7%,,召回率為84.9%,而模型內(nèi)存占用量僅為5.7 MB,。相較YOLO v8n模型分別上升4.0,、8.6、2.3個百分點,,內(nèi)存占用量下降9.5%,。該模型還具備油茶果遮擋類別的自動計數(shù)功能,可降低人工統(tǒng)計的勞動成本,,適合在野外復(fù)雜環(huán)境中部署應(yīng)用,。

    Abstract:

    To solve the challenges of detecting and counting Camellia oleifera fruits with multiple occlusions in complex environments, a detection model was proposed based on a dual-backbone network and a consecutive attention feature fusion module (CAFF). The dual-backbone network combined the advantages of two different backbone networks to achieve efficient extraction of different features. In addition, a dual-input single-output CAFF module was designed. This CAFF module replaced the traditional concat operation and optimizes the fusion strategy for multi-scale feature information. In order to strike a balance between model precision and size, the ghost convolution (Ghostconv) module was used, and the spatial pyramid pooling fast (SPPF) layer was removed. It accelerated training time and reduced the number of parameters. The improved YOLO dual-backbone & consecutive attention feature fusion & lightweight (YOLO-DCL) model performed well on all kinds of occlusion detection tasks, with a mean average precision (mAP) of 92.7%, precision of 90.7%, and recall of 84.9%, while the model size was only 5.7 MB. Compared with the YOLO v8n model, it increased 4.0 percentage points of mAP, 8.6 percentage points of precision, and 2.3 percentage points of recall. At the same time, the model size was decreased by 9.5%. Besides, the model incorporated the ability to automatically count Camellia oleifera fruits with occlusion categories, which can reduce labor costs and improve the accuracy of yield estimation. It was very suitable for deployment in complex environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

肖伸平,趙倩穎,曾甲元,彭自然.基于YOLO-DCL的復(fù)雜環(huán)境油茶果遮擋檢測與計數(shù)研究[J].農(nóng)業(yè)機械學報,2024,55(10):318-326,480. XIAO Shenping, ZHAO Qianying, ZENG Jiayuan, PENG Ziran. Camellia oleifera Fruits Occlusion Detection and Counting in Complex Environments Based on Improved YOLO-DCL[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):318-326,,480.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-06-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼