ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多視角圖像形態(tài)顏色紋理特征融合的生物量獲取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2023YFE0123600),、國家自然科學(xué)基金項目(32171790,、32171818),、江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項目(CX(23)3126)和江蘇省333高層次人才培養(yǎng)工程項目


Plants Biomass Acquisition Based on Morphological, Color and Texture Features of Multi-view Visible Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    可見光成像以其快速,、經(jīng)濟和非破壞性等優(yōu)勢,正成為高通量植物表型和遺傳研究的有效工具,,但仍有待解決基于可見光圖像評估肉眼不可見的產(chǎn)量表型特性,。本文針對植物葉片遮擋重疊及變量尺度單一導(dǎo)致圖像數(shù)據(jù)精度受限的問題,提出了一種利用多視角圖像融合多類別特征評估高粱地上生物量的技術(shù)方法,。對15個種質(zhì)基因的300株高粱進行了雙因素(水分和養(yǎng)分)雙水平(高和低)試驗,?;谛D(zhuǎn)平臺,利用可見光相機對每株高粱等角度間隔自動采集10幅側(cè)視圖像和1幅俯視圖像,,通過植物掩膜圖像提取每株高粱形態(tài)特征(俯視,、側(cè)視投影面積)、顏色特征(RGB像素值)與紋理特征(均值,、協(xié)方差,、同質(zhì)性等),將多個視角下的信息平均化處理,,并基于圖像R,、G、B像素值構(gòu)建16個顏色植被指數(shù),。結(jié)果表明,,相對于考慮單一類型變量和單視角下的圖像信息,基于多視角平均化圖像信息融合形態(tài),、紋理,、顏色特征能顯著增加對高粱地上生物量表型的獲取能力。利用SVR,、RF,、BPNN算法融合21組優(yōu)化圖像數(shù)據(jù)變量構(gòu)建高粱地上生物量回歸模型,精度最高的RF算法模型測試集決定系數(shù)R2為0.881,,均方根誤差(RMSE)為60.714 g/m2,,平均絕對誤差(MAE)為42.364 g/m2。為進一步優(yōu)化RF算法模型的參數(shù),,選取GA,、GS、SSA對RF算法模型進行超參數(shù)尋優(yōu),。結(jié)果表明,,SSA-RF優(yōu)化模型測試集R2提升至0.902,RMSE為48.706 g/m2,,MAE為39.877 g/m2,。基于多視角圖像形態(tài)-顏色-紋理特征融合能從有限的信息中衍生得到更多有效信息用于估測高粱地上生物量,,從而為高粱生長監(jiān)控,、脅迫檢測、水肥精確施用和良種快速篩選提供理論依據(jù)和技術(shù)支持,。

    Abstract:

    Visible light imaging is becoming an effective tool for high-throughput plant phenotyping and genetic research due to its advantages of rapidity, economy and non-destructiveness. However, the evaluation of yield phenotypic characteristics that are invisible to the naked eye based on visible light images remains to be solved. A technical method for evaluating sorghum aboveground biomass by fusing multi-class features with multi-view images was proposed to address the problem of limited image data accuracy due to overlapping plant leaf occlusion and single variable scale. A two-factor (water and nutrient) and two-level (high and low) experiment was conducted on 300 sorghum plants of 15 germplasm genes. Based on a rotating platform, totally ten side-view images and one top-view image were automatically collected at equal angles for each sorghum plant by using a visible light camera. The morphological characteristics (top-view and side-view projection area), color characteristics (RGB pixel values) and texture characteristics (mean, covariance, homogeneity, etc.) of each sorghum plant were extracted through plant mask images. The information from multiple perspectives was averaged, and 16 color vegetation indices were constructed based on the image R, G, and B pixel values. The results showed that compared with considering image information of a single type of variable and a single perspective, the fusion of morphological, texture and color features based on multi-perspective average image information can significantly increase the ability to obtain the aboveground biomass phenotype of sorghum. The SVR, RF and BPNN algorithms were used to fuse 21 sets of optimized image data variables to construct a regression model for aboveground biomass of sorghum. The RF algorithm model with the highest accuracy had a test set determination coefficient (R2) of 0.881, a root mean square error (RMSE) of 60.714 g/m2, and a mean absolute error (MAE) of 42.364 g/m2. In order to further optimize the parameters of the RF algorithm model, GA, GS and SSA were selected to optimize the hyperparameters of the RF algorithm model. The results showed that the test set R2 of the SSA-RF optimization model was increased to 0.902, the RMSE was 48.706 g/m2, and the MAE was 39.877 g/m2. Based on the fusion of multi-view image morphology, color and texture features, more effective information can be derived from limited information for estimating the aboveground biomass of sorghum, thereby providing a theoretical basis and technical support for sorghum growth monitoring, stress detection, precise application of water and fertilizer, and rapid screening of improved varieties.

    參考文獻
    相似文獻
    引證文獻
引用本文

張慧春,田啟飛,邊黎明,GE Yufeng.基于多視角圖像形態(tài)顏色紋理特征融合的生物量獲取[J].農(nóng)業(yè)機械學(xué)報,2024,55(10):295-305. ZHANG Huichun, TIAN Qifei, BIAN Liming, GE Yufeng. Plants Biomass Acquisition Based on Morphological, Color and Texture Features of Multi-view Visible Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):295-305.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼