ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于激光雷達(dá)與RGB相機(jī)融合的玉米作物行檢測算法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002001)和智能農(nóng)業(yè)動(dòng)力裝備全國重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(SKLIAPE2023012)


Maize Crop Row Detection Algorithm Based on Fusion of LiDAR and RGB Camera
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對單一傳感器在面對復(fù)雜田間環(huán)境適應(yīng)性差的問題,,本文提出了一種基于固態(tài)激光雷達(dá)(LiDAR)與RGB相機(jī)融合的玉米作物行檢測方法,。首先,研究了固態(tài)激光雷達(dá)和RGB相機(jī)聯(lián)合標(biāo)定方法,,同步獲取玉米作物行圖像和點(diǎn)云數(shù)據(jù)并進(jìn)行數(shù)據(jù)預(yù)處理,。然后,將預(yù)處理后的圖像數(shù)據(jù)和點(diǎn)云數(shù)據(jù)融合,,實(shí)現(xiàn)點(diǎn)云“著色”,,基于點(diǎn)云“著色”提出聚類感興趣密度區(qū)域算法。利用“著色”點(diǎn)云完成聚類,,并結(jié)合作物種植農(nóng)藝標(biāo)準(zhǔn)(行距),,分別驗(yàn)證點(diǎn)云信息和顏色信息的可用性,能夠選擇最優(yōu)信息完成作物行感興趣區(qū)域聚類,。最后,,通過劃分點(diǎn)云水平條帶的方式確定目標(biāo)點(diǎn)云的特征點(diǎn)聚類區(qū)域,取作物行特征點(diǎn),,并利用最小二乘法擬合作物行檢測線,。僅需調(diào)整行距參數(shù),算法可實(shí)現(xiàn)全生命周期的作物行檢測,,利用正常工況下玉米苗期,、前期、中期和后期數(shù)據(jù)開展算法驗(yàn)證,,作物行中心線平均誤差不大于1.781°,,準(zhǔn)確率不小于92.69%,平均耗時(shí)不超過102.7 ms,。此外,,為驗(yàn)證算法魯棒性,開展了復(fù)雜農(nóng)田背景環(huán)境,,如高雜草背景,、斷行,、苗期雜草高度與玉米高度相近以及玉米完全封行4種工況作物行檢測,,算法平均誤差不大于1.935°,準(zhǔn)確率不小于91.94%,,平均耗時(shí)不超過108.3 ms,。通過討論闡述了基于點(diǎn)云“著色”開展作物行中心線提取的優(yōu)越性,本文算法可為作物行中心線可靠檢測提供參考,。

    Abstract:

    In response to the poor adaptability of a single sensor in facing complex field environments, a maize crop row detection method was proposed based on the fusion of solid-state LiDAR and RGB camera. Firstly, a joint calibration method for solid-state LiDAR and RGB camera was studied to simultaneously acquire maize crop row images and point cloud data for data preprocessing. Next, the preprocessed image data and point cloud data were fused to achieve point cloud “coloring”, and a clustering algorithm based on point cloud “coloring” for detecting regions of interest was proposed. The clustering was done by using the “colored” point cloud, and the availability of both point cloud and color information was separately validated based on crop planting agronomic standards (row spacing) to cluster the regions of interest effectively. Finally, by dividing the point cloud into horizontal strips, the feature points of the target point cloud were clustered to identify crop row feature points, and a crop row detection line was fitted by using the least squares method. By adjusting only the row spacing parameter, the algorithm can achieve crop row detection throughout the crop lifecycle. The algorithm’s performance was verified by using data from maize seedling, early, mid, and late stages under normal conditions, with average centerline error not more than 1.781°, accuracy not less than 92.69%, and average processing time not more than 102.7 ms. Furthermore, to test the algorithm’s robustness, crop row detections under four challenging conditions, including high weed background, missing rows, weed height similar to maize height, and completely closed rows, were conducted in complex agricultural field backgrounds. The algorithm showed an average error of not more than 1.935°, accuracy not less than 91.94%, and an average processing time not more than 108.3 ms. Discussions highlighted the superiority of using point cloud “coloring” for extracting crop row centerline, providing a reliable approach for detecting crop row centerlines.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

江慶,安東,韓華宇,劉京輝,郭延超,陳黎卿,楊洋.基于激光雷達(dá)與RGB相機(jī)融合的玉米作物行檢測算法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(10):263-274. JIANG Qing, AN Dong, HAN Huayu, LIU Jinghui, GUO Yanchao, CHEN Liqing, YANG Yang. Maize Crop Row Detection Algorithm Based on Fusion of LiDAR and RGB Camera[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):263-274.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼