ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于RANSAC擬合點云去噪的蘋果采摘位姿構(gòu)建方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省現(xiàn)代農(nóng)機裝備與技術(shù)示范推廣項目(NJ2022-14)和江蘇省重點研發(fā)計劃項目(BE2017370)


Apple Picking Pose Establishment Based on Filtering Point-cloud Noise by RANSAC Fitting
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對果園環(huán)境下果實重疊和光照等因素帶入的難濾除點云噪聲,,導(dǎo)致借助點云構(gòu)建的采摘位姿精度低的問題,,本文提出了一種基于隨機采樣一致性(Random sample consensus,,RANSAC)擬合點云去噪的采摘位姿構(gòu)建方法,。該方法通過RANSAC擬合算法從預(yù)處理后的果實點云中檢測出多個潛在的球體,并以與點云采集設(shè)備垂直距離最短的球體球心作為目標果實的基準設(shè)置距離閾值,,以便進一步濾除目標果實點云中難濾除的點云噪聲,,提高目標果實的位姿構(gòu)建精度。在此基礎(chǔ)上,,利用最小二乘法對去噪后的點云進行球擬合得到球心坐標,,并作為目標果實的采摘位置,然后結(jié)合實例分割算法獲取的二值化掩膜圖像質(zhì)心三維坐標,,構(gòu)造接近向量作為采摘姿態(tài),,完成采摘位姿的構(gòu)建。重疊果實點云去噪試驗表明,,本文方法能夠有效濾除目標果實中難濾除的點云噪聲;位姿構(gòu)建評估試驗結(jié)果顯示,,在室外仿果園環(huán)境下采用提出的位姿構(gòu)建方法,果實定位精度達到15.0mm,,相較于直接使用RANSAC擬合球的定位方法,,定位精度最大提高28.1%,位置構(gòu)建穩(wěn)定性提高76.0%;果園采摘對比試驗表明,,采用提出的位姿構(gòu)建方法定位成功率達到70.2%,,相較于現(xiàn)有同類方法,定位成功率提高23.4%,,采摘成功率提高38.4%,。本文提出的方法可為復(fù)雜果園環(huán)境下的果實位姿準確構(gòu)建提供參考。

    Abstract:

    To address the issue of low accuracy in picking pose establishment caused by overlapping fruit and challenging lighting conditions that introduced difficult-to-filter point cloud noise in orchard environments, an accurate method for establishing picking poses based on point cloud denoising using the random sample consensus (RANSAC) algorithm was proposed. Multiple potential spheres were detected from the pre-processed fruit point clouds by using the RANSAC algorithm. The sphere center with the shortest vertical distance to the point cloud capturing device was used to set a distance threshold, which facilitated further noise filtering from the target fruit point clouds and enhanced pose establishment accuracy. Subsequently, the denoised point clouds were spherefitted by using the least squares method to obtain the sphere center coordinates, which defined the precise picking position. Furthermore, by integrating the centroid coordinates from the corresponding binary mask image generated via an instance segmentation algorithm, an approach vector was constructed to determine the harvesting orientation, completing the pose establishment process. Experimental results on overlapping fruit point cloud denoising demonstrated that the proposed method effectively removed challenging point cloud noise from the target fruits. Pose establishment evaluations in an outdoor simulated orchard showed that the proposed method achieved a positioning accuracy of 15.0mm, enhancing the direct RANSAC fitting approach by up to 28.1% in accuracy and 76.0% in stability. Comparative harvesting trials in the orchard confirmed a successful positioning rate of 70.2% by using the proposed approach, which represented an increase of 23.4% over existing methods and a 38.4% improvement in harvesting success. The proposed method offered a robust solution for accurate fruit pose establishment in complex orchard environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

江自真,周俊,韓宏琪,王運東.基于RANSAC擬合點云去噪的蘋果采摘位姿構(gòu)建方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(10):72-81. JIANG Zizhen, ZHOU Jun, HAN Hongqi, WANG Yundong. Apple Picking Pose Establishment Based on Filtering Point-cloud Noise by RANSAC Fitting[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):72-81.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼