ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

面向櫻桃番茄采摘識別的輕量化Transformer架構(gòu)優(yōu)化研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省重點研發(fā)計劃項目(2023CXGC010715)和中國機械工業(yè)集團有限公司科技專項(ZDZX2023-2)


Performance Optimization of Lightweight Transformer Architecture for Cherry Tomato Picking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為進一步提升穗收型櫻桃番茄識別準確率和識別速度,實現(xiàn)設(shè)施環(huán)境番茄自動采摘,,提出了一種基于改進Transformer的輕量化櫻桃番茄穗態(tài)識別模型,。首先,構(gòu)建了包含不同光照環(huán)境和采摘姿態(tài)的櫻桃番茄數(shù)據(jù)集,,并對櫻桃番茄果穗姿態(tài)進行了劃分,。然后,提出了一種基于改進RE-DETR的輕量化穗收櫻桃番茄識別模型,,通過引入一個輕量級的骨干網(wǎng)絡(luò)EfficientViT替換RT-DETR原有的骨干網(wǎng)絡(luò),,顯著減少了模型參數(shù)和計算量;同時設(shè)計了一個自適應(yīng)細節(jié)融合模塊,旨在高效處理并融合不同尺度特征圖,,并進一步降低計算復(fù)雜度,。最后,引入加權(quán)函數(shù)滑動機制和指數(shù)移動平均思想來優(yōu)化損失函數(shù),,來處理樣本分類中的不確定性,。實驗結(jié)果表明,該輕量化模型在保持高識別準確率(90%)的同時,,實現(xiàn)了快速檢測(41.2f/s)和低計算量(8.7×109 FLOPs),。與原始網(wǎng)絡(luò)模型,、Faster R-CNN和Swin Transformer相比,平均識別準確率提高1.24%~15.38%,,每秒處理幀數(shù)(FPS)提高25.61%~255.17%,,同時浮點運算量實現(xiàn)了69.37%~92.37%的大幅降低。該模型在綜合性能上有著較強的魯棒性,,兼顧了精度與速度,,可為番茄采摘機器人完成視覺任務(wù)提供技術(shù)支撐。

    Abstract:

    To further improve the recognition accuracy and speed of truss-harvested cherry tomatoes, targeting the scenario of automated tomato harvesting in facility environments, a lightweight cherry tomato truss recognition model was proposed based on an improved transformer. Firstly, a cherry tomato dataset encompassing various lighting conditions and harvesting postures was constructed, and the postures of cherry tomato trusses were categorized. Then a lightweight trussharvested cherry tomato recognition model based on an improved RE-DETR was proposed. This model introduced a lightweight backbone network, EfficientViT, to replace the original backbone of RT-DETR, which significantly reduced model parameters and computational complexity. Additionally, an adaptive detail fusion module was designed to efficiently process and merge feature maps of different scales while further lowered computational complexity. Finally, a weighted function sliding mechanism and exponential moving average concept were introduced to optimize the loss function, which addressed uncertainties in sample classification. Experimental results demonstrated that this lightweight model achieved high recognition accuracy (90.00%) while enabled fast detection (41.2f/s) and low computational cost (8.7×109 FLOPs). Compared with that of the original network model, Faster R-CNN, and Swin Transformer, the average recognition accuracy was improved by 1.24%~15.38%, the frames processed per second (FPS) was increased by 25.61%~255.17%, while simultaneously achieved a substantial reduction of 69.37%~92.37% in floating-point operations. The model exhibited strong robustness in overall performance, balancing accuracy and speed, and can serve as a reference for tomato harvesting robots in completing visual tasks.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙博,柳蘇純,張巍朋,朱立成,韓振浩,馮旭光,王瑞雪.面向櫻桃番茄采摘識別的輕量化Transformer架構(gòu)優(yōu)化研究[J].農(nóng)業(yè)機械學(xué)報,2024,55(10):62-71,,105. ZHAO Bo, LIU Suchun, ZHANG Weipeng, ZHU Licheng, HAN Zhenhao, FENG Xuguang, WANG Ruixue. Performance Optimization of Lightweight Transformer Architecture for Cherry Tomato Picking[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):62-71,,105.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-06-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼