ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于3D點云分析的果園行間穿梭機器人路徑規(guī)劃方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFC1602701)和北方工業(yè)大學1138工程項目(110051360022XN108)


Path Planning Method for Inter-row Shuttle in Densely Planted Orchards
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現(xiàn)有果園導航方法易受冠層密度,、光照條件,、種植不規(guī)整,、地面不平整等條件影響,,導致用于實現(xiàn)自主導航的樹行方向估計方法與行尾識別方法穩(wěn)定性低的問題,,本文提出基于3D點云分析的果園行間穿梭路徑規(guī)劃方法,,該路徑規(guī)劃方法包含樹行識別定位方法、場景識別方法、路徑規(guī)劃方法,,用于密植果園機器人行間自主穿梭的導航系統(tǒng),。首先,設(shè)計了基于點云語義分割網(wǎng)絡(luò)的果樹樹干點云提取方法,,實現(xiàn)了樹行的識別與定位,;其次,設(shè)計了基于卷積神經(jīng)網(wǎng)絡(luò)的位置場景識別方法,,實現(xiàn)了行頭等位置的場景識別,;最后,設(shè)計了基于有限狀態(tài)機的行間行進策略管理方法與基于RS曲線的行間路徑規(guī)劃方法,,實現(xiàn)了果園多行連續(xù)行走?;诒疚姆椒ǖ臉涓牲c云分割平均交并比為88.3%,,果樹平均定位誤差為2.04%(x方向)、1.54%(y方向),,樹行方向估計平均誤差為1.11°,,行尾識別正確率為96%,行內(nèi)中線行走平均偏差為0.08m,。實驗結(jié)果表明,,本文所提出路徑規(guī)劃方法能夠滿足果園環(huán)境下樹行定位與位置場景識別準確性要求,有效規(guī)劃行間穿梭路徑,,為果園激光自主導航提供有效參考,。

    Abstract:

    Addressing the issues with existing orchard navigation methods, which are susceptible to canopy density, lighting conditions, irregular planting, and uneven ground, leading to low stability in tree row direction estimation and row end identification methods used for autonomous navigation, a 3D point cloud-based method for pathway planning was introduced. The method comprised three primary components, a tree row identification technique, a scene recognition method, and a pathway planning strategy. These formed a system that enabled robots to autonomously shuttle between densely planted rows. Initially, a trunk point cloud extraction method using a semantic segmentation network was developed for tree row identification and positioning. Subsequently, a convolutional neural network-based method was established for location scene recognition to identify various scenarios within rows. Finally, an inter-row movement strategy managed by a finite state machine and a pathway planning method based on RS curves were designed for continuous walking through multiple rows. The trunk point cloud segmentation achieved an average IoU of 88.3%, with tree localization errors of 2.04% in the x-direction and 1.54% in the y-direction. The average error in tree row direction estimation was 1.11°.The row-end recognition accuracy reached 96%,and the average deviation of in-line centerline walking was 0.08m. These results showed that the proposed methods met the accuracy requirements for tree row positioning and scene recognition in outdoor orchards, which effectively planed pathways between rows and served as a reliable reference for autonomous laser-guided navigation.

    參考文獻
    相似文獻
    引證文獻
引用本文

畢松,余鑫.基于3D點云分析的果園行間穿梭機器人路徑規(guī)劃方法[J].農(nóng)業(yè)機械學報,2024,55(10):37-50. BI Song, YU Xin. Path Planning Method for Inter-row Shuttle in Densely Planted Orchards[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(10):37-50.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-10
  • 出版日期:
文章二維碼