ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合無人機光譜信息與紋理特征的大豆土壤含水率估測模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(52179045)和大學(xué)生創(chuàng)新性實驗項目(202400860A9)


Estimation Model of Soybean Soil Moisture Content Based on UAV Spectral Information and Texture Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    及時獲取大田作物根區(qū)土壤含水率(Soil moisture content,,SMC)對于實現(xiàn)精準(zhǔn)灌溉至關(guān)重要,。本研究采用無人機多光譜技術(shù),通過連續(xù)2年(2021—2022年)田間試驗,,采集了大豆開花期不同土壤深度的SMC數(shù)據(jù)以及相應(yīng)的無人機多光譜圖像,,建立了與作物參數(shù)具有較強相關(guān)性的植被指數(shù)及冠層紋理特征。通過分析植被指數(shù)和紋理特征與各深度土層SMC的相關(guān)性,,分別篩選出與各深度土層SMC相關(guān)系數(shù)達顯著相關(guān)(P<0.05)的參數(shù)作為模型的輸入變量(組合1:植被指數(shù),;組合2:紋理特征;組合3:植被指數(shù)結(jié)合紋理特征),,分別利用支持向量機(Support vector machine,,SVM)、梯度提升模型(Extreme gradient boosting,,XGBoost)和梯度提升決策樹(Gradient boosting decision tree,GDBT)對各深度土層SMC進行建模,。結(jié)果表明,,與20~40 cm和40~60 cm土層深度相比,,植被指數(shù)和紋理特征在0~20 cm土層深度中與SMC表現(xiàn)出更高的相關(guān)性。XGBoost模型為SMC估算的最佳建模方法,,特別是對于0~20 cm土層深度,。該深度估計模型驗證集決定系數(shù)為0.881,均方根誤差為0.7%,,平均相對誤差為3.758%,。本研究結(jié)果為大豆根區(qū)SMC無人機多光譜監(jiān)測提供了基礎(chǔ),為水分脅迫條件下作物生長的快速評估提供了參考,。

    Abstract:

    Timely acquisition of soil moisture content (SMC) in the root zone of field crops is crucial for achieving precision irrigation. Drone-based multispectral technology and conducted field experiments over two consecutive years (2021—2022) were used to collect SMC data at different soil depths during the soybean flowering stage, as well as corresponding multispectral images from the drone. Vegetation indices and canopy texture features, which are highly correlated with crop parameters, were established. By analyzing the correlation between vegetation indices, texture features, and SMC at various soil depths, parameters with significant correlation coefficients (P<0.05) were selected as input variables for the model (Combination 1: vegetation indices;Combination 2: texture features;Combination 3: vegetation indices combined with texture features). Support vector machine (SVM), extreme gradient boosting (XGBoost), and gradient boosting decision tree (GDBT) models were used to model SMC at different soil depths. The results indicated that compared with soil depths of 20~40 cm and 40~60 cm, vegetation indices and texture features exhibited higher correlations with SMC at the 0~20 cm soil depth. The XGBoost model was found to be the best modeling method for SMC estimation, particularly for the 0~20 cm soil depth. For this depth, the validation set of the estimation model had a determination coefficient of 0.881, a root mean square error of 0.7%, and a mean relative error of 3.758%. The research result can provide a foundation for drone-based multispectral monitoring of SMC in the soybean root zone and offer a reference for rapid assessment of crop growth under water stress conditions.

    參考文獻
    相似文獻
    引證文獻
引用本文

李志軍,陳國夫,支佳偉,向友珍,李冬梅,張富倉,陳俊英.融合無人機光譜信息與紋理特征的大豆土壤含水率估測模型研究[J].農(nóng)業(yè)機械學(xué)報,2024,55(9):347-357. LI Zhijun, CHEN Guofu, ZHI Jiawei, XIANG Youzhen, LI Dongmei, ZHANG Fucang, CHEN Junying. Estimation Model of Soybean Soil Moisture Content Based on UAV Spectral Information and Texture Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):347-357.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼