ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于時域卷積網(wǎng)絡(luò)與Transformer的茶園蒸散量預(yù)測模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省科技型中小企業(yè)創(chuàng)新能力提升工程項目(2022TSGC2487、2023TSGC0557),、日照市重點(diǎn)研發(fā)計劃項目(2023ZDYF010129)和泰安市科技創(chuàng)新重大專項項目(2023NYLZ13)


Evapotranspiration Prediction Model of Tea Garden Based on Temporal Convolutional Network and Transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在茶園水資源管理中,,蒸散量(Evapotranspiration,ET)是評估作物水分需求的關(guān)鍵指標(biāo),,由于茶園蒸散量預(yù)測具有時序性,、不穩(wěn)定性以及非線性耦合等特點(diǎn),目前的茶園蒸散量預(yù)測模型存在預(yù)測精度較低的問題,,針對此問題本文提出了一種新型的茶園蒸散量預(yù)測模型。首先使用互信息算法(Mutual information,,MI)與主成分分析算法(Principal component analysis,,PCA)相融合的數(shù)據(jù)處理算法(MIPCA),篩選強(qiáng)相關(guān)的特征并提取主成分,;其次將時域卷積網(wǎng)絡(luò)(Temporal convolutional network,,TCN)與Transformer融合,利用灰狼算法(Grey wolf optimization,,GWO)優(yōu)化超參數(shù),,捕捉茶園數(shù)據(jù)的全局依賴關(guān)系,;最后整合2個網(wǎng)絡(luò)構(gòu)建了MIPCA-TCN-GWO-Transformer模型,通過消融試驗和對比試驗驗證了模型性能,,并對模型在不同時間步長下的性能進(jìn)行測試,。結(jié)果表明,該模型平均絕對百分比誤差(Mean absolute percentage error,,MAPE),、均方根誤差(Root mean square error,RMSE)和決定系數(shù)(Coefficient of determination, R2)3個評價指標(biāo)分別為0.015 mm/d,、0.312 mm/d和0.962,,優(yōu)于長短期記憶模型 (Long short term memory,LSTM)等傳統(tǒng)預(yù)測模型,。在小時尺度,、日尺度和月尺度下的R2分別為0.986、0.978和0.946,,在不同時間步長下展現(xiàn)了良好的適應(yīng)性和準(zhǔn)確性,。本文構(gòu)建的MIPCA-TCN-GWO-Transformer模型具有較高的預(yù)測精度和穩(wěn)定性,可為茶園水資源優(yōu)化管理和灌溉制度制定提供科學(xué)參考,。

    Abstract:

    In tea garden water resource management, accurately assessing crop water requirements is crucial, with evapotranspiration (ET) serving as a key indicator. The challenges posed by the time series nature, instability, and non-linear coupling in tea garden data were addressed by introducing a novel evapotranspiration prediction model. Firstly, a data processing algorithm, mutual information-principal component analysis (MIPCA), was employed to integrate mutual information (MI) and principal component analysis (PCA), facilitating the selection of features strongly correlated with tea garden transpiration and the extraction of principal components. Subsequently, the temporal convolutional networks (TCN) was integrated with Transformer to construct a new model. Specifically, the grey wolf optimization (GWO) algorithm was employed to optimize the hyperparameters of the TCN, followed by the utilization of the Transformer to capture global dependencies. Ultimately, the two networks were integrated to propose the hybrid model MIPCA-TCN-GWO-Transformer. The model performance was validated through ablation experiments and comparative analyses, while also examining the model’s performance across different time scales. The results showed that the model’s three evaluation indicators such as mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2) were 0.015 mm/d, 0.312 mm/d and 0.962, respectively, which as better than that of traditional prediction models such as long short term memory (LSTM). R2 at hourly scale, daily scale and monthly scale were 0.986, 0.978 and 0.946, respectively, showing good adaptability and accuracy at different time scales. The MIPCA-TCN-GWO-Transformer model constructed had high prediction accuracy and can provide scientific reference for the optimal management of tea garden water resources and the formulation of irrigation systems.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙秀艷,王彬,都曉娜,王武闖,丁兆堂,周長安,張開興.基于時域卷積網(wǎng)絡(luò)與Transformer的茶園蒸散量預(yù)測模型[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(9):337-346. ZHAO Xiuyan, WANG Bin, DU Xiaona, WANG Wuchuang, DING Zhaotang, ZHOU Chang’an, ZHANG Kaixing. Evapotranspiration Prediction Model of Tea Garden Based on Temporal Convolutional Network and Transformer[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):337-346.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼