ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于法向量夾角的果樹點云配準與枝葉分割方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省現(xiàn)代農(nóng)機裝備與技術(shù)示范推廣項目(NJ2022-14)和江蘇省重點研發(fā)計劃項目(BE2017370)


Fruit Tree Point Cloud Registration Based on Normal Vector Angles and Branch-Leaf Segmentation Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在實現(xiàn)果園作業(yè)全自動化的過程中,,亟需直接構(gòu)建自然環(huán)境下果樹枝干三維模型的方法,。本文通過對自然環(huán)境下以不同角度采集的果樹點云進行配準,,并針對采樣一致性(SAC-IA)+迭代最近點(ICP)配準算法在點云配準中耗時較長以及精度不高的問題,,結(jié)合點云法向量夾角提取源點云和目標點云的特征點,并通過點云法向量夾角的余弦值在源點云和目標點云的特征點中查找待匹配點對的方法,,提出了一種基于果樹點云待匹配點對的改進SAC-IA+ICP點云配準算法,;借助最小包圍盒劃分的分塊技術(shù)對配準后的果樹點云進行分塊,然后利用點云的幾何特征,,對劃分的子塊進行枝葉粗分割,,最后使用歐氏聚類完成枝葉的精細分割。對比實驗結(jié)果顯示,,改進后的SAC-IA+ICP算法在平均旋轉(zhuǎn)誤差上相較于原始SAC-IA+ICP算法減少85.44%,,配準均方根誤差相較于原始SAC-IA+ICP算法減少71.74%,配準時間相較于原始SAC-IA+ICP算法減少97.99%,;同時,,改進后的SAC-IA+ICP算法在平均旋轉(zhuǎn)誤差上相較于SAC-IA+NDT算法減少90.38%,配準均方根誤差相較于SAC-IA+NDT算法減少85.39%,,配準時間相較于SAC-IA+NDT算法減少98.04%,。另外,,本文采用的枝葉分割算法能夠完成枝葉分割,且相較于人工分割其分割準確度可達94.77%,。

    Abstract:

    In realizing full automation of orchard operations, it is urgent to construct a 3D model of fruit tree branches and trunks in the natural environment directly. Point clouds of fruit trees collected from different views in the natural environment were registered. Considering that sampling consistency (SAC-IA)+iterative nearest point (ICP) registration algorithm took a long time and had low accuracy in point cloud registration. Thus, the feature points of the source point cloud and target point cloud were extracted by combining the angle of the normal vector of the point cloud, and then matching point pairs were found in the feature points of the source and target point clouds based on the cosine value of the angle of the normal vector of the point cloud. Using the matching point pairs of fruit tree point clouds, an improved SAC-IA+ICP point cloud registration algorithm was proposed. Further, the registered fruit tree point cloud was partitioned by using the partitioning technology of minimum box partition, and then the branches and leaves of the partitioned sub-blocks were roughed by using the geometric features of the point cloud; finally, the branches and leaves were partitioned by using Euclidean clustering. Compared with the original SAC-IA+ICP algorithm, the average rotation error was reduced by 85.44%, and the registration root mean square error can be reduced by 71.74%, the registration time was reduced by 97.99%. Meantime,,compared with the SAC-IA+NDT algorithm, the average rotation error was reduced by 90.38%, and the registration root mean square error can be reduced by 85.39%, the registration time was reduced by 98.04%. The segmentation algorithm can complete the segmentation of branches and leaves, and the accuracy can reach 94.77% compared with manual segmentation.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓宏琪,江自真,周俊,顧寶興.基于法向量夾角的果樹點云配準與枝葉分割方法研究[J].農(nóng)業(yè)機械學報,2024,55(9):327-336. HAN Hongqi, JIANG Zizhen, ZHOU Jun, GU Baoxing. Fruit Tree Point Cloud Registration Based on Normal Vector Angles and Branch-Leaf Segmentation Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):327-336.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼