ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于神經(jīng)輻射場的RGB圖像點云重建多肉植物及尺寸測量研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(32172780)


Point Cloud Reconstruction of Succulent Plants Based on Neural Radiance Fields RGB Image and Dimensional Measurement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以多肉植物盆栽為研究對象,使用手持式RGB相機采集11個多肉植物盆栽的視頻數(shù)據(jù),,通過將視頻轉(zhuǎn)換為圖像幀,、選取優(yōu)質(zhì)清晰圖像幀,、計算相機位姿得到含豐富信息的RGB圖像數(shù)據(jù)。提出一種改進(jìn)神經(jīng)輻射場的多肉植物三維重建方法,,根據(jù)實際場景提出新的射線采樣策略,,同時引入改進(jìn)的圖像修復(fù)模塊與隱式模型重建點云方法,并根據(jù)點云重建結(jié)果提取多肉植株的葉片數(shù),、株高,、冠圍、凸包體積,、葉長,、葉寬和葉色共7個表型參數(shù)。最后選取具有代表性,、易測量的葉片數(shù),、株高、冠圍,、葉長和葉寬5個表型參數(shù)進(jìn)行精度評估與誤差原因分析,,平均絕對百分比誤差(MAPE)分別為2.32%、3.95%,、4.95%,、5.59%和9.55%,均方根誤差(RMSE)分別為0.86片和1.95,、17.54,、1.87、1.27 mm,,決定系數(shù)(R2)分別為0.99,、0.99、0.86,、0.91和0.89。精度評估結(jié)果表明,,所提取的表型參數(shù)能夠準(zhǔn)確,、高效地反映多肉植株生長狀態(tài),充分發(fā)揮RGB圖像新視角合成技術(shù),、圖像處理技術(shù)與三維點云重建技術(shù)的優(yōu)勢,,實現(xiàn)多肉植株盆栽的表型參數(shù)高精度、非破壞性提取,,能夠為多肉植物的種植和養(yǎng)育以及為非固定,、多視角的RGB數(shù)據(jù)獲取研究提供重要的技術(shù)支持。

    Abstract:

    Focusing on potted succulent plants, handheld RGB cameras were utilized to collect video data of 11 potted succulent plants. By converting videos into image frames, high-quality clear frames were selected, and camera poses were calculated, and containing rich information RGB image data was obtained. An improved method for three-dimensional reconstruction of succulent plants based on NeRF was proposed. A new ray sampling strategy tailored to actual scenes was introduced, along with an enhanced image restoration module and an implicit model for point cloud reconstruction. Seven phenotypic parameters of succulent plants were extracted from the point cloud reconstruction results, including leaf count, plant height, crown circumference, convex hull volume, leaf length, leaf width, and leaf color. Finally, a precision assessment and error analysis were conducted on five representative and easily measurable phenotypic parameters: leaf count, plant height, crown circumference, leaf length, and leaf width. The mean absolute percentage error (MAPE) for these parameters was respectively 2.32%, 3.95%, 4.95%, 5.59%, and 9.55%, and the root mean square error (RMSE) was respectively 0.86 leaves and 1.95 mm, 17.54 mm, 1.87 mm, 1.27 mm, with respective R2 values of 0.99, 0.99, 0.86, 0.91, and 0.89. The results of precision assessment indicated that the extracted phenotypic parameters can accurately and efficiently reflect the growth status of succulent plants. By leveraging advantages in RGB image synthesis technology, image processing, and 3D point cloud reconstruction, non-destructive extraction of phenotypic parameters for potted succulent plants was achieved with high precision. The research result can provide important technical support for succulent plant cultivation and nurturing, as well as for studies involving non-fixed, multi-perspective RGB data acquisition.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

尹令,陳招達(dá),藍(lán)善貴,楊杰,張素敏,黃瓊.基于神經(jīng)輻射場的RGB圖像點云重建多肉植物及尺寸測量研究[J].農(nóng)業(yè)機械學(xué)報,2024,55(9):316-326. YIN Ling, CHEN Zhaoda, LAN Shangui, YANG Jie, ZHANG Sumin, HUANG Qiong. Point Cloud Reconstruction of Succulent Plants Based on Neural Radiance Fields RGB Image and Dimensional Measurement[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):316-326.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼