ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多特征優(yōu)化的PolSAR數(shù)據(jù)農作物精細分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(U22B2015)和陜西省重點研發(fā)計劃項目(2024NC-ZDCYL-05-02)


Crop Classification Based on PolSAR Data Using Multiple Feature Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農作物精細分類在農業(yè)資源調查、農作物種植結構監(jiān)管等諸多領域具有重要意義,。極化合成孔徑雷達(Polarimetric synthetic aperture radar, PolSAR)能夠有效探測偽裝和穿透掩蓋物,,提取多種散射特征信息,獲取覆蓋農作物生長關鍵物候階段的連續(xù)時序信息,,有效提升表達作物遙感特征的豐富度,,在農作物分類中獨具優(yōu)勢。但多時相和多特征的引入必然導致模型運算量劇增,,不利于工程應用,。針對上述問題,本文提出了一種基于多特征優(yōu)化的PolSAR數(shù)據(jù)農作物精細分類方法,,首先對PolSAR數(shù)據(jù)進行多種極化目標分解及參數(shù)提取以獲得多個散射特征,;然后使用基于棧式稀疏自編碼網(wǎng)絡和ReliefF優(yōu)選的方法進行特征增強與優(yōu)化,獲取最優(yōu)特征集,;最后構建具有2個分支結構的卷積神經(jīng)網(wǎng)絡,,融合不同卷積深度輸出的特征,完成農作物的高精度分類,。通過對單時相數(shù)據(jù)的特征分析,、單時相數(shù)據(jù)初步分類實驗和多時相數(shù)據(jù)不同特征集結合分類器的對比實驗,證明本文所提方法能夠在低維特征輸入的前提下,,最大程度提取不同作物之間的差異性特征,,準確高效地實現(xiàn)對農作物的精細分類,最高分類精度和Kappa系數(shù)分別達到97.69%和97.24%,。

    Abstract:

    Crop fine classification is of great significance in many fields such as agricultural resources survey and crop planting structure supervision. Polarimetric synthetic aperture radar (PolSAR) can effectively detect camouflage and penetrate masks, extract multiple scattering feature information, obtain continuous time series information covering the key climatic phases of crop growth, and effectively enhance the richness of crop remote sensing features, which is a unique advantage in crop classification. However, the introduction of multi-temporal phases and multi-features inevitably leads to a drastic increase in model arithmetic, which is not conducive to engineering applications. In view of the above problems, a multi-feature optimization-based approach for crop fine classification of PolSAR data was proposed, which firstly carried out multiple polarization target decomposition and parameter extraction of the PolSAR data in order to obtain multiple scattering features, and then a stacked sparse self-coding network based and ReliefF preferred method was used for feature enhancement and optimization to obtain the optimal set of features, and finally a convolutional neural network with two branching structures was constructed to fuse the features output from different convolutional depths to complete the high-precision classification of crops. Through the characterization of single-time-phase data, the preliminary classification experiments of single-time-phase data and the comparison experiments of combining classifiers with different feature sets of multi-time-phase data, it was proved that the method proposed can maximally extract the differential features between different crops under the premise of low-dimensional feature input, and accurately and efficiently realize the fine classification of crops, with the highest classification accuracy and Kappa coefficient reaching 97.69% and 97.24%, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭交,王鶴穎,項詩雨,連嘉茜,王輝.基于多特征優(yōu)化的PolSAR數(shù)據(jù)農作物精細分類方法[J].農業(yè)機械學報,2024,55(9):275-285. GUO Jiao, WANG Heying, XIANG Shiyu, LIAN Jiaqian, WANG Hui. Crop Classification Based on PolSAR Data Using Multiple Feature Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):275-285.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼