0.9),。"/>

ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于不同時間尺度與特征優(yōu)選的黃淮海平原冬小麥識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Identification of Winter Wheat in Huang-Huai-Hai Plain Based on Different Time Scales and Feature Preference
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    準確及時地監(jiān)測區(qū)域作物種植面積對保障我國糧食安全和農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義,。本研究利用Google Earth Engine(GEE)云平臺和融合的Sentinel-1 SAR雷達影像與Sentinel-2 SR地表反射率影像,,對黃淮海平原2021年冬小麥進行了監(jiān)督分類,。通過對Sentinel時間序列數(shù)據(jù)進行不同時間尺度合成與平滑處理,,并對極化特征、光譜特征,、植被指數(shù),、諧波系數(shù)和紋理特征進行優(yōu)選,以探究不同時間尺度的影像序列及特征優(yōu)選對黃淮海平原冬小麥識別精度和泛化能力的影響,。結(jié)果表明:特征優(yōu)選過程可以提高模型分類精度,,在各類特征因子中,光譜特征重要性最高,,其次為諧波系數(shù),、極化特征和紋理特征。隨著影像序列時間尺度的縮減,,可以得到更高的分類精度,,尺度30、20、10d平均總體精度分別為95.4%,、95.6%和96.4%,;但泛化能力也隨之降低,對應(yīng)的泛化能力分別為0.935,、0.919和0.918,。短時間尺度影像序列能夠更準確地捕獲地物的特征細節(jié),展現(xiàn)出更高的分類精度,,但其對數(shù)據(jù)變化的適應(yīng)能力更差,。此外,模型泛化能力在空間上呈現(xiàn)“越近越相關(guān)”的規(guī)律,。利用GEE平臺及Sentinel系列衛(wèi)星遙感數(shù)據(jù),,實現(xiàn)了對黃淮海平原冬小麥面積的準確識別。整體上,,混淆矩陣總體精度(OA)和F1值均在90%以上,,分類結(jié)果在空間細節(jié)上與高分辨率圖像高度一致,同時提取的冬小麥種植面積與市級官方統(tǒng)計數(shù)據(jù)高度相關(guān)(決定系數(shù)R2>0.9),。

    Abstract:

    Monitoring regional crop acreage accurately and promptly is critical for ensuring food security and promoting sustainable agricultural development in China. The Google Earth Engine (GEE) cloud platform, along with fused Sentinel-1 SAR radar and Sentinel-2 SR surface reflectance imagery were employed to classify winter wheat in 2021 within the Huang-Huai-Hai Plain. The Sentinel time series data were synthesized and smoothed across various temporal scales, and a prioritization of polarization features, spectral features, vegetation index, harmonic coefficients, and textural features were conducted to explore their impacts on the accuracy and generalization ability of winter wheat identification in the region. The results showed that the feature optimization process improved the classification accuracy of the model, and the spectral features were the most significant, followed by harmonic coefficients, polarization, and textural features. Reducing the time scale of image sequences led to higher classification accuracy, with overall accuracies of 95.4%, 95.6%, and 96.4% for 30 d, 20 d and 10 d scales, respectively. However, this also resulted in a decrease in generalization ability, with corresponding scores of 0.935, 0.919, and 0.918. Shorter time scales captured finer details of ground features, achieving higher classification accuracy but showing less adaptability to data variations. Moreover, the model’s generalization ability demonstrated a spatial pattern of ‘the closer it was, the more relevant they were’. The identification of winter wheat areas using the GEE platform and Sentinel imagery was highly accurate, with overall accuracy and F1 scores of the confusion matrix exceeding 90%, and classification results were highly consistent in spatial detail with high-resolution images. Furthermore, the estimated areas of winter wheat showed a strong correlation with official municipal statistics (coefficient of determination R2>0.9).

    參考文獻
    相似文獻
    引證文獻
引用本文

周俊偉,馮浩,董勤各.基于不同時間尺度與特征優(yōu)選的黃淮海平原冬小麥識別[J].農(nóng)業(yè)機械學(xué)報,2024,55(9):262-274. ZHOU Junwei, FENG Hao, DONG Qin’ge. Identification of Winter Wheat in Huang-Huai-Hai Plain Based on Different Time Scales and Feature Preference[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):262-274.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-05-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼