ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多光譜遙感和CNN的玉米地上生物量估算模型
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD1900802),、國家自然科學(xué)基金聯(lián)合基金重點項目(U2243235)和陜西省重點研發(fā)計劃項目(2022NY-220)


Estimating Aboveground Biomass of Maize Based on Multispectral Remote Sensing and Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前玉米地上生物量(Aboveground biomass,AGB)的預(yù)測方法集中在使用從無人機(jī)圖像中提取光學(xué)植被指數(shù),,通過線性模型或機(jī)器學(xué)習(xí)算法與AGB建立關(guān)系,,原始圖像信息損失嚴(yán)重,玉米生長后期的飽和效應(yīng)會嚴(yán)重降低模型精度,。針對此問題,,本文收集了玉米拔節(jié)期、吐絲期和乳熟期的無人機(jī)圖像和地面數(shù)據(jù),。分析了不同生育期玉米干地上生物量,、鮮地上生物量與8個植被指數(shù)(Vegetation indexes, VIs)之間的相關(guān)性。分別以最優(yōu)植被指數(shù)作為輸入建立多層感知機(jī)(Multilayer perceptron, MLP)模型,、以無人機(jī)多光譜圖像作為輸入建立卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)模型來估算玉米干地上生物量,、鮮地上生物量。結(jié)果表明,,基于MLP的玉米干地上生物量估算模型隨著玉米生育期推進(jìn),,模型的精度急劇下降,3個生長期MLP模型驗證集R2分別為0.65,、0.23,、0.32,RMSE分別為0.27,、2.15,、5.03 t/hm2。CNN模型能夠較好地克服光譜飽和問題,,具有良好的精度和適用性,,3個生育期驗證集R2分別提高27.69%、191.30%,、171.88%,,RMSE分別降低22.22%、38.14%,、45.53%?;贛LP的玉米鮮地上生物量估算模型在玉米生長后期模型的精度同樣較低,,吐絲期、乳熟期驗證集的R2分別為0.27,、0.37,,RMSE分別為11.57、14.98 t/hm2。CNN模型2個生育期驗證集的R2分別提高159.26%,、129.73%,,RMSE分別降低26.62%、54.01%,。使用原始多光譜圖像作為輸入的CNN模型取得了最好的估計結(jié)果,,可為玉米不同生育期的監(jiān)測研究、精準(zhǔn)管理提供指導(dǎo),。

    Abstract:

    Rapid and accurate estimation of aboveground biomass (AGB) in maize is crucial for evaluating maize growth and precise field management. Current AGB prediction methods mainly use optical vegetation indexes extracted from UAV images, employing linear models or machine learning algorithms. These methods often result in significant loss of raw image information and face saturation effects during later stages of maize growth, severely degrading model accuracy. UAV images and ground data were collected from maize at the nodulation, silking, and milking stages. The correlations between dry and fresh AGB of maize and eight vegetation indexes at different fertility stages were analyzed. Optimal vegetation indexes were used to build a multilayer perceptron (MLP) model, while UAV multispectral images were used to construct a convolutional neural network (CNN) model to estimate dry and fresh AGB, respectively. The results showed that the accuracy of the MLP-based maize AGB dry weight estimation model was decreased sharply with the advancement of maize fertility, and the R2 values of validation set of MLP model for the three growing seasons were 0.65, 0.23, and 0.32, and the RMSE values were 0.27 t/hm2, 2.15 t/hm2, and 5.03 t/hm2, respectively. The CNN model can better overcome the spectral saturation problem with good accuracy and applicability. The R2 values of the three fertility validation sets were improved by 27.69%, 191.30% and 171.88%, and the RMSE was reduced by 22.22%, 38.14% and 45.53%, respectively. The accuracy of the MLP-based maize AGB fresh weight estimation model was similarly low in the late maize growth stage model, with R2 values of 0.27 and 0.37, and RMSE values of 11.57 t/hm2 and 14.98 t/hm2 for the validation sets of the spatula and milk maturity stages, respectively. The R2 values of the validation set for the two fertility stages of the CNN model was improved by 159.26% and 129.73%, and the RMSE was decreased by 26.62% and 54.01%, respectively. The CNN model using original multispectral images as inputs achieved the best estimation results, providing valuable guidance for monitoring research and precise management of maize at different fertility stages.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周敏姑,閆云才,高文,何景源,李鑫帥,牛子杰.基于多光譜遙感和CNN的玉米地上生物量估算模型[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(9):238-248. ZHOU Mingu, YAN Yuncai, GAO Wen, HE Jingyuan, LI Xinshuai, NIU Zijie. Estimating Aboveground Biomass of Maize Based on Multispectral Remote Sensing and Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):238-248.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼