ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多模態(tài)知識(shí)圖譜的水稻施肥期判別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2021-59)


Rice Fertilization Period Discrimination Method Based on Multi-modal Knowledge Graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    目前水稻施肥時(shí)間的確定依賴于傳統(tǒng)經(jīng)驗(yàn)與人工巡田觀察的綜合判斷,難以滿足當(dāng)前農(nóng)業(yè)智能化的發(fā)展。為此,,提出了一種基于多模態(tài)知識(shí)圖譜的水稻施肥期判別方法,綜合利用了文本形式的經(jīng)驗(yàn)信息和圖像形式的視覺(jué)信息進(jìn)行施肥期確定,。首先構(gòu)建單模態(tài)水稻施肥知識(shí)圖譜,,利用依存句法分析提取返青肥、分蘗肥,、穗肥,、粒肥4個(gè)施肥期對(duì)應(yīng)的跨模態(tài)特征短語(yǔ),結(jié)合Chinese CLIP模型得到它們與圖像的匹配度以及與施肥期節(jié)點(diǎn)的權(quán)重后組成新的帶有跨模態(tài)節(jié)點(diǎn)的三元組,,完成多模態(tài)水稻施肥知識(shí)圖譜的構(gòu)建,;然后基于多模態(tài)知識(shí)圖譜計(jì)算輸入信息的綜合匹配度,使用大田采集的圖像進(jìn)行交叉驗(yàn)證,,綜合評(píng)估判別方法的準(zhǔn)確性和穩(wěn)定性確定各施肥期的判定閾值,,實(shí)現(xiàn)對(duì)該輸入的施肥期判別。以實(shí)際采集的各施肥期當(dāng)日及前,、后5 d的600幅圖像測(cè)試判別方法的準(zhǔn)確率,,結(jié)果表明,基于多模態(tài)知識(shí)圖譜的水稻施肥期判別方法總體準(zhǔn)確率達(dá)到86.2%,,其中粒肥時(shí)期判別準(zhǔn)確率最高,,為90.1%。該施肥期判別方法同時(shí)利用文本,、圖像兩種模態(tài)的信息,,提高了信息利用率,在真實(shí)場(chǎng)景下具有判別能力,,為水稻施肥期自動(dòng)確定提供參考,。

    Abstract:

    Currently, the determination of the optimal fertilization time for rice relies heavily on a combination of traditional experience and manual field inspection, which struggles to meet the demands of modern agricultural intelligence. In response, a method for rice fertilization period discrimination was introduced based on a multi-modal knowledge graph, integrating textual experiential information and visual cues for determining the fertilization period. Initially, a single-modal knowledge graph for rice fertilization was constructed. On this basis, cross-modal feature phrases corresponding to the four fertilization periods (re-greening, tillering, heading, and grain-filling) were extracted by using dependency syntax analysis. These phrases were then combined with the Chinese CLIP model to determine their match with images and their respective weights for the fertilization periods, forming new triplets with cross-modal nodes. This led to the creation of a multi-modal rice fertilization knowledge graph. Subsequently, the multi-modal knowledge graph was used to calculate the comprehensive matching degree of input information, and field-collected images were utilized for cross-validation. This process comprehensively evaluated the accuracy and stability of the discrimination method, thereby determining the decision thresholds for each fertilization period. The discrimination methods accuracy was tested by using 600 images captured on the day of each fertilization period and five days before and after. Results showed that the overall accuracy rate of the multi-modal knowledge graph-based rice fertilization period discrimination method was 86.2%, with the highest accuracy rate of 90.1% during the grain-filling period. By utilizing both textual and visual modalities, this method enhanced information utilization and demonstrated discriminative capability in real-world scenarios, offering a reference for the automated determination of rice fertilization periods.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁立存,周俊,戈為溪,鄭彭元.基于多模態(tài)知識(shí)圖譜的水稻施肥期判別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(9):163-173. YUAN Licun, ZHOU Jun, GE Weixi, ZHENG Pengyuan. Rice Fertilization Period Discrimination Method Based on Multi-modal Knowledge Graph[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(9):163-173.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-09-10
  • 出版日期:
文章二維碼