ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v7-RA的火龍果品質與成熟度雙指標檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

蘇州市農(nóng)業(yè)科學院科研基金項目(22022、22023)


Dual-index Detection Method of Pitaya Quality and Maturity Based on YOLO v7-RA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    已有火龍果檢測方法僅針對單一性能指標,難以滿足農(nóng)業(yè)真實場景的需要,,為此提出了一種精準高效的火龍果品質與成熟度雙指標檢測方法。首先,,利用自適應鑒別器增強的樣式生成對抗網(wǎng)絡擴充火龍果圖像,,建立復雜環(huán)境火龍果數(shù)據(jù)集。采用伽馬變換進行圖像增強,,凸顯火龍果特征,,降低光照環(huán)境的影響。其次,,提出了YOLO v7-RA模型,。通過設計ELAN_R3替代ELAN(Efficient layer aggregation network)模塊,減少主干網(wǎng)絡對重復特征的提取,,增強模型對細粒度特征關注度,,提高雙指標檢測準確率。融入混合注意力機制(Mixture of self-attention and convolution,,ACmix),,增強模型對特征的提取和整合能力,降低雜亂背景信息干擾,。最后,,通過實驗驗證了YOLO v7-RA模型的檢測性能。實驗結果表明,,該方法精準率為97.4%,召回率為97.7%,,mAP0.5為96.2%,,F(xiàn)SP為74f/s,實現(xiàn)了檢測精度與檢測速度的均衡,。即使在遮擋情況下,,YOLO v7-RA模型檢測精準率仍達到91.4%,具有較好泛化能力,,能夠為火龍果智能化采摘的發(fā)展提供技術支持,。

    Abstract:

    Research on pitaya detection methods is the basis and prerequisite for realizing intelligent picking. Existing pitaya detection methods only target a single performance indicator, which is difficult to meet the needs of real agricultural scenarios. Therefore, an accurate and efficient dual-index detection method for pitaya quality and maturity was proposed. Firstly, the adaptive discriminator enhanced style generation adversarial network algorithm was used to expand the pitaya image and establish a pitaya dataset. The image was enhanced by gamma transform to highlight the characteristics of pitaya and reduce the impact of lighting environment. Secondly, the YOLO v7-RA model was proposed, by designing ELAN_R3 to replace the efficient layer aggregation network (ELAN) module to reduce the extraction of repetitive features by the backbone network. This enhanced the model’s attention to fine-grained features and improved the accuracy of dual-index detection. The mixture of selfattention and convolution (ACmix)was applied to enhance the model’s ability to extract and integrate feature information, and reduce the interference of cluttered background information. Finally, the detection level of the YOLO v7-RA model was verified through experiments. Experimental results showed that the precision rate of the method was 97.4%, the recall rate was 97.7%, the mAP0.5 was 96.2%, and FSP was 74f/s. A balance between detection accuracy and detection speed was achieved. Even under occlusion, the YOLO v7-RA model detection accuracy still reached 91.4%. The model had good generalization ability to provide strong technical support for the development of intelligent pitaya picking.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐婷婷,宋亮,盧學鶴,張海東.基于YOLO v7-RA的火龍果品質與成熟度雙指標檢測方法[J].農(nóng)業(yè)機械學報,2024,55(7):405-414. XU Tingting, SONG Liang, LU Xuehe, ZHANG Haidong. Dual-index Detection Method of Pitaya Quality and Maturity Based on YOLO v7-RA[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):405-414.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼