ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

辣椒葉片水分脅迫高光譜特性研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32172552、31701326)


Spectral Characteristics of Water Stress in Chili Pepper Leaves
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為精準(zhǔn)判別作物需水程度,,以生長(zhǎng)期辣椒為實(shí)驗(yàn)樣本,,對(duì)辣椒進(jìn)行不同程度的水浸、干旱等水分脅迫處理,,分析不同水分脅迫程度下辣椒葉片的高光譜響應(yīng)特性,。樣本分為重度干旱、輕度干旱,、輕度水浸,、重度水浸等4個(gè)水分脅迫組和一個(gè)實(shí)驗(yàn)對(duì)照組,共5個(gè)數(shù)據(jù)組,,每組20株辣椒,,待各組葉片外觀出現(xiàn)明顯差異時(shí),,分別采集各組辣椒葉片的葉綠素?zé)晒鈪?shù)與高光譜數(shù)據(jù),。比較多元散射校正(MSC)、SG卷積平滑濾波和標(biāo)準(zhǔn)正態(tài)變換(SNV)3種不同的預(yù)處理方法對(duì)背景信息干擾的消除效果,。采用SPA算法和CARS算法提取對(duì)水分脅迫敏感的特征波長(zhǎng),。建立預(yù)測(cè)辣椒葉片不同水分脅迫程度的支持向量機(jī)(SVM)、BP神經(jīng)網(wǎng)絡(luò),、徑向基函數(shù)(RBF)和隨機(jī)森林(RF)模型,。結(jié)果說(shuō)明,SG-SPA-RFB為預(yù)測(cè)辣椒葉片水分脅迫程度的最優(yōu)組合,,其訓(xùn)練集準(zhǔn)確率為99.02%,,測(cè)試集準(zhǔn)確率為94.00%。本研究為判斷辣椒植株水分脅迫狀態(tài)提供了一種便捷可靠的無(wú)損檢測(cè)方法,。

    Abstract:

    In response to the need for smart agriculture to accurately discriminate the degree of crop water demand, taking growing peppers as the experimental samples, different degrees of water stress treatments such as water immersion and drought to the leaves of peppers were applied to analyze the hyperspectral response characteristics of pepper leaves under different degrees of water stress. The samples were divided into four water stress groups, including severe drought, mild drought, mild water-soaked, and severe water-soaked, and one experimental control group, with a total of five data groups of 20 chili peppers in each group, and the chlorophyll fluorescence parameters and hyperspectral data of chili peppers’ leaves in each group were collected separately when the appearance of leaves in each group appeared to be obviously different. The effects of three different preprocessing methods, namely, multiplicative scatter correction (MSC), SG convolutional smoothing filter and standard normal variate transform (SNV), on the elimination of background information interference were compared. The SPA algorithm and CARS algorithm were used to extract the characteristic wavelengths sensitive to water stress. Support vector machine (SVM), BP neural network, radial basis function (RBF) and random forest (RF) modeling were established for predicting different levels of water stress. The results illustrated that SG-SPA-RFB was the optimal combination for predicting the degree of water stress with 99.02% accuracy in the training set and 94.00% accuracy in the test set. The research result can provide a convenient and reliable non-destructive method for determining the water stress status of pepper plants.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王東,孫欣,張?jiān)狸?yáng),夏鶴寧,逯明輝,周林凡.辣椒葉片水分脅迫高光譜特性研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):336-344. WANG Dong, SUN Xin, ZHANG Yueyang, XIA Hening, LU Minghui, ZHOU Linfan. Spectral Characteristics of Water Stress in Chili Pepper Leaves[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):336-344.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼