ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v8s的羊只行為識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河北省重點研發(fā)計劃項目(22327403D)


Sheep Behavior Recognition Method Based on Improved YOLO v8s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    羊只站立、行走,、采食等日常行為與其健康狀況密切相關(guān),,高效,、準(zhǔn)確的羊只行為識別有助于疾病檢測,,對實現(xiàn)羊只健康預(yù)警具有重要意義。針對目前羊只多行為識別檢測大多基于傳感器等接觸式設(shè)備,,羊只活動受限,,行為具有局限性,且群體養(yǎng)殖環(huán)境下,,羊只行為多樣,、場景復(fù)雜、存在遮擋等造成的行為識別精度低等問題,,提出了一種基于改進YOLO v8s的羊只行為識別方法,。首先,引入SPPCSPC空間金字塔結(jié)構(gòu)增強了模型的特征提取能力,,提升了模型的檢測精度,。其次,新增P2小目標(biāo)檢測層,,增強了模型對小目標(biāo)的識別和定位能力,。最后,引入多尺度輕量化模塊PConv和EMSConv,,在保證模型識別效果的同時,,降低了模型參數(shù)量和計算量,實現(xiàn)了模型輕量化,。實驗結(jié)果表明,,改進YOLO v8s模型對羊只站立、行走,、采食,、飲水、趴臥行為平均識別精度分別為84.62%,、92.58%,、87.54%、98.13%和87.18%,,整體平均識別精度為90.01%,。與Faster R-CNN、YOLO v5s,、YOLO v7,、YOLO v8s模型相比,,平均識別精度分別提高12.03、3.95,、1.46,、2.19個百分點。研究成果可為羊只健康管理和疾病預(yù)警提供技術(shù)支撐,。

    Abstract:

    The daily behaviors of sheep, such as standing, walking, eating, drinking and sitting, are closely related to their health. Efficient and accurate recognition of sheep behaviors is crucial for disease and health detection. To address the current problem of the limited behavior of sheep caused by contact devices such as sensors and lower accuracy caused by diverse behaviors, complex scenarios, and occlusions in group farming, the method for sheep behavior recognition based on improved YOLO v8s was proposed. Firstly, the SPPCSPC was introduced to improve the feature extraction ability and the detection accuracy of the model. Secondly, the P2 detection was used to enhance ability of the model to identify and locate the small targets. Finally, multi-scale lightweight modules PConv and EMSConv were introduced and the number of parameters and calculation of the model were reduced and the lightweight was realized while ensuring the recognition of effects. The results showed that the average accuracy of the model proposed for standing, walking, eating, drinking, and sitting was 84.62%, 92.58%, 87.54%, 98.13% and 87.18%, respectively. And the overall average accuracy was 90.01%. Compared with Faster R-CNN, YOLO v5s, YOLO v7, and YOLO v8s model, the average accuracy was 12.03 percentage points, 3.95 percentage points, 1.46 percentage points, and 2.19 percentage points higher, respectively. The results can provide technical support for sheep health management and disease warning.

    參考文獻
    相似文獻
    引證文獻
引用本文

王旺,王福順,張偉進,劉紅達,王晨,王超,何振學(xué).基于改進YOLO v8s的羊只行為識別方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(7):325-335,,344. WANG Wang, WANG Fushun, ZHANG Weijin, LIU Hongda, WANG Chen, WANG Chao, HE Zhenxue. Sheep Behavior Recognition Method Based on Improved YOLO v8s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):325-335,344.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼