ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v7-tiny的玉米種質(zhì)資源雄穗檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFF0711805、2021YFD1200701),、河南省科技攻關(guān)計劃項目(232102110213,、242102110372、242102110356)和河南省農(nóng)業(yè)科學院自主創(chuàng)新專項基金項目(2023ZC070)


Tassel Detection Method of Maize Germplasm Resources Based on Improved YOLO v7-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對玉米種質(zhì)資源遺傳多樣性豐富導致雄穗大小,、形態(tài)結(jié)構(gòu)及顏色呈現(xiàn)較大差異,,無人機搭載可見光傳感器相比地面采集圖像分辨率低,以及圖像中部分雄穗過小,、與背景相似度高,、被遮擋、相互交錯等情況帶來的雄穗檢測精度低的問題,,提出了一種改進YOLO v7-tiny模型的玉米種質(zhì)資源雄穗檢測方法,。該方法通過在YOLO v7-tiny中引入SPD-Conv模塊和VanillaBlock模塊,以及添加ECA-Net模塊的方式,,增強模型對雄穗特征的提取能力,。利用自建的玉米種質(zhì)資源雄穗數(shù)據(jù)集,訓練并測試改進模型,。結(jié)果表明,,改進YOLO v7-tiny的平均精度均值為94.6%,相比YOLO v7-tiny提升1.5個百分點,,相比同等規(guī)模的輕量級模型YOLO v5s,、YOLO v8s分別提升1.0、3.1個百分點,,顯著降低了圖像中雄穗漏檢及背景誤檢為雄穗的發(fā)生,,有效減少了單穗誤檢為多穗和交錯狀態(tài)下雄穗個數(shù)誤判的情況。改進YOLO v7-tiny模型內(nèi)存占用量為17.8MB,,推理速度為231f/s,。本文方法在保證模型輕量化的前提下提升了雄穗檢測精度,為玉米種質(zhì)資源雄穗實時,、精準檢測提供了技術(shù)支撐,。

    Abstract:

    Due to the rich genetic diversity of maize germplasm resources, the size, morphological structure and color of tassels were quite different. The resolution of maize tassel image collected by UAV equipped with visible light sensor was lower than that of ground acquisition, and some tassels in the image were too small, which were highly similar to the background, occluded and interlaced. The above factors led to low accuracy of tassel detection. Therefore, a tassel detection method for maize germplasm resources based on improved YOLO v7-tiny model was proposed. This method enhanced the model’s ability to extract tassel features by introducing SPD-Conv module and VanillaBlock module into YOLO v7-tiny, and adding ECA-Net module. Tested on the self-built tassel dataset of maize germplasm resources, the mean average precision of the improved YOLO v7-tiny was 94.6%, which was 1.5 percentage points higher than that of YOLO v7-tiny, and 1.0 percentage points and 3.1 percentage points higher than that of the lightweight models YOLO v5s and YOLO v8s, respectively. This method significantly reduced the occurrence of missing tassels and false detection of background as tassels in the image, and effectively reduced the misdetection of a single tassel as multiple tassels and the number of tassels in interlaced state. The model size of the improved YOLO v7-tiny was 17.8MB, and the inference speed was 231f/s. The proposed method can improve the accuracy of tassel detection under the premise of ensuring the lightweight of the model, and can provide technical support for the real-time and accurate detection of tassel of maize germplasm resources.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬中杰,羅晨,駱巍,王利鋒,馮曉,李會勇.基于改進YOLO v7-tiny的玉米種質(zhì)資源雄穗檢測方法[J].農(nóng)業(yè)機械學報,2024,55(7):290-297. MA Zhongjie, LUO Chen, LUO Wei, WANG Lifeng, FENG Xiao, LI Huiyong. Tassel Detection Method of Maize Germplasm Resources Based on Improved YOLO v7-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):290-297.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼