ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v8s的小麥小穗赤霉病檢測研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31501225),、河南省科技研發(fā)計劃聯(lián)合基金項目(222301420113)、河南省自然科學基金項目(232300420186)和河南省科技攻關項目(242102111193)


Wheat Spikelet Detection of Fusarium Head Blight Based on Improved YOLO v8s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)大田復雜背景下小麥小穗赤霉病快速準確識別,,構建了包含冬小麥開花期,、灌漿期和成熟期3個生育期共計640幅的小麥赤霉病圖像數(shù)據(jù)集,并提出一種基于改進YOLO v8s的小麥小穗赤霉病識別方法,。首先,,利用全維動態(tài)卷積ODConv替換主干網(wǎng)絡中的標準Conv,提高網(wǎng)絡對目標區(qū)域特征的提??;然后,,在Neck網(wǎng)絡使用改進Efficient RepGFPN特征融合網(wǎng)絡實現(xiàn)低層特征與高層語義信息的融合,使模型能夠提取更豐富的特征信息,;最后,,采用EIoU損失函數(shù)替換CIoU損失函數(shù),加快模型收斂速度,,進一步提高模型準確率,,實現(xiàn)對小麥小穗赤霉病的快速、準確識別,。在自建的數(shù)據(jù)集上進行模型驗證,,結果表明,改進模型(OCE-YOLO v8s)對小麥小穗赤霉病的檢測精度達到98.3%,,相比原模型提高2個百分點,;與Faster R-CNN、CenterNet,、YOLO v5s,、YOLO v6s、YOLO v7模型相比分別提高36,、25.7,、2.1、2.6,、3.9個百分點。提出的OCE-YOLO v8s模型能有效實現(xiàn)小麥小穗赤霉病精確檢測,,可為大田環(huán)境下農(nóng)作物病蟲害實時監(jiān)測提供參考,。

    Abstract:

    To achieve rapid and accurate identification of fusarium head blight on wheat spikelets in complex field background, a wheat fusarium head blight image dataset comprising a total of 640 images across three growth stages: flowering, grain filling, and ripening of winter wheat was constructed. Additionally, a wheat spikelet fusarium head blight recognition method based on an improved YOLO v8s model was proposed. Firstly, using the omni-dimensional dynamic convolution (ODConv) to replace the standard convolution in the backbone network enhanced the network’s extraction of features from target regions and suppressed interference from cluttered background information. Secondly, an improved Efficient RepGFPN feature fusion network was utilized in the neck network to integrate low-level features with high-level semantic information, enabling the model to extract richer feature information. Lastly, the enhanced intersection over union (EIoU) loss function was employed instead of the complete intersection over union (CIoU) loss function to accelerate model convergence speed and further improve model accuracy, thus achieving rapid and accurate identification of fusarium head blight on wheat spikelets. Model validation on a self-built dataset revealed that the improved model (OCE-YOLO v8s) achieved a detection accuracy of 98.3% for fusarium head blight on wheat spikelets, which was an improvement of 2 percentage points compared with the original model. Compared with Faster R-CNN, CenterNet, YOLO v5s, YOLO v6s, and YOLO v7 models, the OCE-YOLO v8s model achieved improvements of 36 percentages, 25.7 percentages, 2.1 percentages, 2.6 percentages, and 3.9 percentages, respectively. The OCE-YOLO v8s model effectively met the requirements for precise detection of fusarium head blight on wheat spikelets and could provide valuable insights for real-time monitoring of crop diseases and pests in complex backgrounds of field environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

時雷,楊程凱,雷鏡楷,劉志浩,王健,席磊,熊蜀峰.基于改進YOLO v8s的小麥小穗赤霉病檢測研究[J].農(nóng)業(yè)機械學報,2024,55(7):280-289. SHI Lei, YANG Chengkai, LEI Jingkai, LIU Zhihao, WANG Jian, XI Lei, XIONG Shufeng. Wheat Spikelet Detection of Fusarium Head Blight Based on Improved YOLO v8s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):280-289.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼