ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)注意力機(jī)制和多語(yǔ)義特征增強(qiáng)的自然環(huán)境下棗品種識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62102130)和河北省自然科學(xué)基金項(xiàng)目(F2020204003)


Jujube Variety Recognition Based on Improved Attention Mechanism and Multi-semantic Feature Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前自然環(huán)境下棗品種識(shí)別準(zhǔn)確率較低的問(wèn)題,,提出了一種基于注意力機(jī)制和多語(yǔ)義特征增強(qiáng)的棗品種識(shí)別模型(ICBAM_MSFE_Res50),。該模型在ResNet-50基礎(chǔ)上,引入改進(jìn)注意力機(jī)制(Improved convolutional block attention module,, ICBAM),,ICBAM采用一維卷積和多尺度空洞卷積對(duì)卷積塊注意力模塊(CBAM)進(jìn)行改進(jìn),消除了特征圖降維時(shí)的信息損失,降低了模型計(jì)算量和參數(shù)量,,提高了模型對(duì)棗果區(qū)域細(xì)粒度特征的提取能力,。同時(shí),提出了多語(yǔ)義特征增強(qiáng)(Multi semantic feature enhancement,,MSFE)模塊,,該模塊通過(guò)棗果區(qū)域定位算法提取更多棗果局部顯著特征,并采用顯著性特征抑制算法迫使模型學(xué)習(xí)棗果次要特征,,從而達(dá)到棗果多種語(yǔ)義特征學(xué)習(xí),。實(shí)驗(yàn)結(jié)果表明,在20類(lèi)棗品種數(shù)據(jù)集上,,本文模型準(zhǔn)確率為92.20%,,與ResNet-50相比,提高4.26個(gè)百分點(diǎn),。對(duì)比AlexNet,、VGG-16、ResNet-18,、InceptionV3模型,,準(zhǔn)確率分別提高15.84、9.22,、6.86,、3.55個(gè)百分點(diǎn)。對(duì)比其他棗品種識(shí)別方法,,本文方法在20種棗品種識(shí)別中表現(xiàn)最優(yōu),,可為自然環(huán)境下棗品種識(shí)別研究提供參考。

    Abstract:

    In response to the low accuracy of jujube variety recognition in current natural scenarios, a jujube variety recognition model was proposed based on attention mechanism and multi-semantic feature enhancement (ICBAM_MSFE_Res50). On the basis of ResNet-50, the attention mechanism ICBAM (improved convolutional block attention module) was introduced. ICBAM improved the convolutional block attention module (CBAM) by using one-dimensional convolution and multi-scale hole convolution, eliminating information loss during feature map dimensionality reduction, reducing the computational and parameter complexity of the model, and improving the model’s ability to extract fine-grained features in jujube fruit regions. At the same time, a multi-semantic feature enhancement (MSFE) module was proposed, which extracted more local salient features of jujube fruit through jujube fruit region localization algorithm, and used saliency feature suppression algorithm to force the model to learn secondary features of jujube fruit, thereby achieving the learning of multiple semantic features of jujube fruit. The experimental results showed that the accuracy of the model on the dataset of 20 types of jujube varieties was 92.20%, which was 4.26 percentage points higher than that of ResNet-50. Compared with the AlexNet, VGG-16, ResNet-18, and InceptionV3 models, the accuracy was improved by 15.84, 9.22, 6.86, and 3.55 percentage points, respectively. Compared with other jujube variety recognition methods, this method still performed the best in the recognition of 20 types of jujube, which can provide reference for research on jujube variety recognition in natural scenarios.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

雷浩,苑迎春,許楠,何振學(xué).基于改進(jìn)注意力機(jī)制和多語(yǔ)義特征增強(qiáng)的自然環(huán)境下棗品種識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):270-279,,324. LEI Hao, YUAN Yingchun, XU Nan, HE Zhenxue. Jujube Variety Recognition Based on Improved Attention Mechanism and Multi-semantic Feature Enhancement[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):270-279,,324.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-03
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼