ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)和高斯過程回歸的玉米冠下視覺導(dǎo)航路徑提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD2000201),、國家自然科學(xué)基金項(xiàng)目(32271988)、吉林省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20220202028NC)和吉林省科技發(fā)展計(jì)劃項(xiàng)目(20230508032RC)


Deep Learning and Gaussian Process Regression Based Path Extraction for Visual Navigation under Canopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    面對田間作業(yè)過程中大型機(jī)器機(jī)動(dòng)性差及復(fù)雜場景下導(dǎo)航路徑擬合精度差的問題,,提出一種基于深度學(xué)習(xí)和高斯過程回歸的玉米冠層下導(dǎo)航路徑提取方法,。首先,基于四足機(jī)器人采集玉米冠下作物行圖像,,對Mask R-CNN實(shí)例分割方法進(jìn)行改進(jìn),,在特征融合網(wǎng)絡(luò)引入簡化路徑增強(qiáng)特征金字塔網(wǎng)絡(luò)(Simple path aggregation network, Simple-PAN),通過增加自底向上的路徑增強(qiáng)模塊和特征融合操作模塊,,提高圖像上下文特征的融合能力,。其次,以模型識(shí)別的冠下作物行目標(biāo)為基礎(chǔ)構(gòu)建兩側(cè)區(qū)域分界線,,計(jì)算可通行區(qū)域兩側(cè)下垂葉片的分布情況,,優(yōu)化基于加權(quán)平均的導(dǎo)航路徑算法。對高斯過程回歸(Gaussian process regression, GPR)算法進(jìn)行改進(jìn),,添加DotProduct線性核對曲線擬合進(jìn)行優(yōu)化,,優(yōu)化GPR方法的直線擬合效果。最后,,在驗(yàn)證集上進(jìn)行導(dǎo)航路徑識(shí)別,,計(jì)算不同方法擬合導(dǎo)航路徑的平均偏差。試驗(yàn)結(jié)果表明,,該算法能夠適應(yīng)玉米田中葉片遮擋根莖的情況,,優(yōu)化的Mask R-CNN模型具備更高的冠下目標(biāo)分割精度,基于改進(jìn)GPR算法擬合的導(dǎo)航線平均偏差為0.7像素,,處理一幀分辨率為1280像素×720像素的圖像平均耗時(shí)為227ms,,該算法能提供在玉米冠層下具備一定避障能力的導(dǎo)航路徑,滿足導(dǎo)航實(shí)時(shí)性和準(zhǔn)確性的要求,。結(jié)果可為田間智能農(nóng)業(yè)裝備的導(dǎo)航算法研究提供技術(shù)與理論支撐,。

    Abstract:

    Facing the problem of difficult maneuvering of large machines during field operations and poor fitting accuracy of navigation paths in complex scenarios, a method of extracting navigation paths under the maize canopy was proposed based on deep learning and Gaussian process regression. Firstly, based on the quadruped robot collecting images of crop rows under the corn canopy, the Mask R-CNN instance segmentation method was improved, and the simple path aggregation network (Simple-PAN) was introduced into the feature fusion network, and the bottom-up path augmentation module and the feature fusion operation module were increased to improve the image context feature extraction module and the fusion capability of image context features. Secondly, the dividing line between the two sides of the area was constructed on the basis of the crop row target under the crown identified by the model, the distribution of the drooping leaves on both sides of the passable area was calculated, and the navigation path algorithm was optimized based on weighted average. The Gaussian process regression (GPR) algorithm was improved, and the DotProduct linear kernel was added to optimize the curve fitting and improve the straight line fitting effect of the GPR method. Finally, the navigation path recognition was performed on the validation set, and the average pixel deviation of the navigation paths fitted by different methods was calculated. The experimental results showed that the algorithm was able to adapt to the situation of leaf-obscuring rhizomes in corn fields, the optimized Mask R-CNN model possessed higher target segmentation accuracy under the canopy, the average deviation of the navigation line fitted based on the improved GPR algorithm was 0.7 pixels, and the average time consumed for processing a frame with a resolution of 1280 pixels×720 pixels was 227ms. The algorithm can provide navigation paths with some obstacle avoidance capability under the maize canopy to meet the requirements of real-time and accuracy of navigation. The research results can provide a technical and theoretical support for the research of navigation algorithms for intelligent agricultural equipment in the field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張偉榮,陳學(xué)庚,齊江濤,周俊博,李寧,王碩.基于深度學(xué)習(xí)和高斯過程回歸的玉米冠下視覺導(dǎo)航路徑提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):15-26. ZHANG Weirong, CHEN Xuegeng, QI Jiangtao, ZHOU Junbo, LI Ning, WANG Shuo. Deep Learning and Gaussian Process Regression Based Path Extraction for Visual Navigation under Canopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):15-26.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期:
文章二維碼