ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于柔性應變傳感器的數據手套手勢識別研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(51305209),、江蘇省高等學校自然科學研究項目(18KJA4600050,、21KJB460010)、江蘇省“六大人才高峰”高層次人才項目(GDZB-024)和機器人學國家重點實驗室開放項目(2018-O16)


Data Glove Gesture Recognition Based on Flexible Strain Sensors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)手勢識別系統(tǒng)識別率不高,、響應不穩(wěn)定等問題,,設計了一個包括柔性傳感器、信號采集系統(tǒng),、手勢識別算法的柔性應變傳感器數據手套手勢識別系統(tǒng),。該系統(tǒng)可準確捕捉每根手指關節(jié)運動信息,具有高自由度,、低成本,、高識別率等特點。在軟硅膠材料中摻雜特定配比的碳黑(CB)和碳納米管(CNTs),,通過轉印技術設計出線性度好,、靈敏度高的電阻式傳感器。實驗結果表明,,傳感器具有較好的靜態(tài),、動態(tài)響應特性,并完成傳感器標定,;利用多個柔性傳感器制備數據手套并搭建信號采集系統(tǒng),,進一步提出融合BP神經網絡和模板匹配技術的手勢識別方法,,以提升相近手勢字母識別率,算法識別率為98.5%,;針對不同人群開展手勢識別實驗,,結果表明,該手勢識別系統(tǒng)準確率達到92.8%,,響應時間約40ms,,該數據手套具有較好的應用潛力。

    Abstract:

    In response to the problems of low recognition rate and unstable response in traditional gesture recognition systems, a flexible strain sensor data glove gesture recognition system was developed, which included flexible sensors, signal acquisition systems, and gesture recognition algorithms. The system can accurately capture the motion information of each finger joint, and had the characteristics of high degree of freedom, low cost and high recognition rate. Carbon black (CB) and carbon nanotubes (CNTs) were doped into soft silica gel, and a resistive sensor with good linearity and high sensitivity was designed by extension technology. The experimental results showed that the sensor had good static and dynamic response characteristics, and the sensor calibration was completed. Using multiple flexible sensors to prepare data gloves and build a signal acquisition system, a gesture recognition method combining BP neural network and template matching technology was further proposed to improve the recognition rate of similar gestures, and the recognition rate of the algorithm was 98.5%. Gesture recognition experiments were carried out for different groups of people. The results showed that the accuracy of the gesture recognition system reached 92.8%, and the response time was about 40ms. The data glove had good application potential.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱銀龍,沈宏駿,吳杰,王旭,劉英.基于柔性應變傳感器的數據手套手勢識別研究[J].農業(yè)機械學報,2024,55(6):451-458. ZHU Yinlong, SHEN Hongjun, WU Jie, WANG Xu, LIU Ying. Data Glove Gesture Recognition Based on Flexible Strain Sensors[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):451-458.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-10-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼