ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于柔性應(yīng)變傳感器的數(shù)據(jù)手套手勢(shì)識(shí)別研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51305209),、江蘇省高等學(xué)校自然科學(xué)研究項(xiàng)目(18KJA4600050,、21KJB460010)、江蘇省“六大人才高峰”高層次人才項(xiàng)目(GDZB-024)和機(jī)器人學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放項(xiàng)目(2018-O16)


Data Glove Gesture Recognition Based on Flexible Strain Sensors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)傳統(tǒng)手勢(shì)識(shí)別系統(tǒng)識(shí)別率不高,、響應(yīng)不穩(wěn)定等問(wèn)題,,設(shè)計(jì)了一個(gè)包括柔性傳感器、信號(hào)采集系統(tǒng),、手勢(shì)識(shí)別算法的柔性應(yīng)變傳感器數(shù)據(jù)手套手勢(shì)識(shí)別系統(tǒng),。該系統(tǒng)可準(zhǔn)確捕捉每根手指關(guān)節(jié)運(yùn)動(dòng)信息,具有高自由度,、低成本,、高識(shí)別率等特點(diǎn)。在軟硅膠材料中摻雜特定配比的碳黑(CB)和碳納米管(CNTs),,通過(guò)轉(zhuǎn)印技術(shù)設(shè)計(jì)出線性度好,、靈敏度高的電阻式傳感器。實(shí)驗(yàn)結(jié)果表明,,傳感器具有較好的靜態(tài),、動(dòng)態(tài)響應(yīng)特性,并完成傳感器標(biāo)定,;利用多個(gè)柔性傳感器制備數(shù)據(jù)手套并搭建信號(hào)采集系統(tǒng),,進(jìn)一步提出融合BP神經(jīng)網(wǎng)絡(luò)和模板匹配技術(shù)的手勢(shì)識(shí)別方法,以提升相近手勢(shì)字母識(shí)別率,,算法識(shí)別率為98.5%,;針對(duì)不同人群開(kāi)展手勢(shì)識(shí)別實(shí)驗(yàn),結(jié)果表明,,該手勢(shì)識(shí)別系統(tǒng)準(zhǔn)確率達(dá)到92.8%,,響應(yīng)時(shí)間約40ms,該數(shù)據(jù)手套具有較好的應(yīng)用潛力,。

    Abstract:

    In response to the problems of low recognition rate and unstable response in traditional gesture recognition systems, a flexible strain sensor data glove gesture recognition system was developed, which included flexible sensors, signal acquisition systems, and gesture recognition algorithms. The system can accurately capture the motion information of each finger joint, and had the characteristics of high degree of freedom, low cost and high recognition rate. Carbon black (CB) and carbon nanotubes (CNTs) were doped into soft silica gel, and a resistive sensor with good linearity and high sensitivity was designed by extension technology. The experimental results showed that the sensor had good static and dynamic response characteristics, and the sensor calibration was completed. Using multiple flexible sensors to prepare data gloves and build a signal acquisition system, a gesture recognition method combining BP neural network and template matching technology was further proposed to improve the recognition rate of similar gestures, and the recognition rate of the algorithm was 98.5%. Gesture recognition experiments were carried out for different groups of people. The results showed that the accuracy of the gesture recognition system reached 92.8%, and the response time was about 40ms. The data glove had good application potential.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱銀龍,沈宏駿,吳杰,王旭,劉英.基于柔性應(yīng)變傳感器的數(shù)據(jù)手套手勢(shì)識(shí)別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):451-458. ZHU Yinlong, SHEN Hongjun, WU Jie, WANG Xu, LIU Ying. Data Glove Gesture Recognition Based on Flexible Strain Sensors[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):451-458.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼