ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于連續(xù)提示注入與指針網(wǎng)絡(luò)的農(nóng)業(yè)病害命名實(shí)體識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家科技創(chuàng)新2030-“新一代人工智能”重大項(xiàng)目(2021ZD0113604)、財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-23-D07)和河北省自然科學(xué)基金項(xiàng)目(F2022204004)


Named Entity Recognition of Agricultural Disease Based on Continuous Prompts Injection and Pointer Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)農(nóng)業(yè)病害領(lǐng)域命名實(shí)體識(shí)別過(guò)程中存在的預(yù)訓(xùn)練語(yǔ)言模型利用不充分,、外部知識(shí)注入利用率低,、嵌套命名實(shí)體識(shí)別率低的問(wèn)題,本文提出基于連續(xù)提示注入和指針網(wǎng)絡(luò)的命名實(shí)體識(shí)別模型CP-MRC(Continuous prompts for machine reading comprehension),。該模型引入BERT(Bidirectional encoder representation from transformers)預(yù)訓(xùn)練模型,,通過(guò)凍結(jié)BERT模型原有參數(shù),保留其在預(yù)訓(xùn)練階段獲取到的文本表征能力,;為了增強(qiáng)模型對(duì)領(lǐng)域數(shù)據(jù)的適用性,,在每層Transformer中插入連續(xù)可訓(xùn)練提示向量;為提高嵌套命名實(shí)體識(shí)別的準(zhǔn)確性,,采用指針網(wǎng)絡(luò)抽取實(shí)體序列,。在自建農(nóng)業(yè)病害數(shù)據(jù)集上開(kāi)展了對(duì)比實(shí)驗(yàn),該數(shù)據(jù)集包含2933條文本語(yǔ)料,,8個(gè)實(shí)體類(lèi)型,,共10414個(gè)實(shí)體。實(shí)驗(yàn)結(jié)果顯示,,CP-MRC模型的精確率,、召回率、F1值達(dá)到83.55%,、81.4%,、82.4%,優(yōu)于其他模型,;在病原,、作物兩類(lèi)嵌套實(shí)體的識(shí)別率較其他模型F1值提升3個(gè)百分點(diǎn)和13個(gè)百分點(diǎn),嵌套實(shí)體識(shí)別率明顯提升,。本文提出的模型僅采用少量可訓(xùn)練參數(shù)仍然具備良好識(shí)別性能,,為較大規(guī)模預(yù)訓(xùn)練模型在信息抽取任務(wù)上的應(yīng)用提供了思路,。

    Abstract:

    In response to the problems of insufficient utilization of pretrained language models, low utilization of external knowledge injection, and low recognition rate of nested named entities in the process of named entity recognition in the field of agricultural diseases, a named entity recognition model continuous prompts for machine reading comprehension (CP-MRC) was proposed based on continuous prompt injection and pointer network. This model introduced the bidirectional encoder representation from transformers (BERT) pretraining model, which freezed the original parameters of the BERT model and retained its text representation ability obtained during the pretraining stage. To enhance the applicability of the model to domain data, continuous trainable hint vectors were inserted into each layer of Transformer. To improve the accuracy of nested named entity recognition, a pointer network was used to extract entity sequences. A comparative experiment was conducted on a self built agricultural disease dataset, which included 2933 text corpora, 8 entity types, and a total of 10414 entities. The experimental results showed that the accuracy, recall, and F1 values of the CP-MRC model reached 83.55%, 81.4%, and 82.4%, which was superior to other models. The recognition rate of nested entities in pathogens and crops was increased by 3 percentage points and 13 percentage points in F1 value compared with that of others, and the recognition rate of nested entities was significantly improved. The model still had good recognition performance with only a small number of trainable parameters, providing ideas for the application of large-scale pretrained models in information extraction tasks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王春山,張宸碩,吳華瑞,朱華吉,繆祎晟,張立杰.基于連續(xù)提示注入與指針網(wǎng)絡(luò)的農(nóng)業(yè)病害命名實(shí)體識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):254-261. WANG Chunshan, ZHANG Chenshuo, WU Huarui, ZHU Huaji, MIAO Yisheng, ZHANG Lijie. Named Entity Recognition of Agricultural Disease Based on Continuous Prompts Injection and Pointer Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):254-261.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼