ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于運(yùn)動(dòng)特征提取和2D卷積的魚類攝食行為識(shí)別研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

上海市崇明區(qū)農(nóng)業(yè)科創(chuàng)項(xiàng)目(2021CNKC-05-06),、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD2401304)和上海市水產(chǎn)動(dòng)物良種創(chuàng)制與綠色養(yǎng)殖協(xié)同創(chuàng)新中心項(xiàng)目(2021科技02-12)


Recognition of Feeding Behavior of Fish Based on Motion Feature Extraction and 2D Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了促進(jìn)漁業(yè)裝備智能化,,近年來基于視頻流的魚類攝食行為識(shí)別研究受到了廣泛關(guān)注,。針對(duì)基于視頻流的傳統(tǒng)識(shí)別方法模型過于復(fù)雜,,難以在邊緣計(jì)算設(shè)備部署的問題,,提出了一種輕量級(jí)的2D卷積運(yùn)動(dòng)特征提取網(wǎng)絡(luò)Motion-EfficientNetV2,,該網(wǎng)絡(luò)以視頻流為輸入,能夠有效識(shí)別魚類攝食行為,。提出的模型以EfficientNetV2為主干網(wǎng)絡(luò),,基于TEA和ECANet構(gòu)建了運(yùn)動(dòng)特征提取模塊Motion,并將該模塊嵌入到EfficientNetV2的每個(gè)Fused-MBConv模塊中,,使改進(jìn)后的EfficientNetV2具有運(yùn)動(dòng)特征提取能力,。同時(shí)使用ECANet對(duì)EfficientNetV2網(wǎng)絡(luò)中的MBConv進(jìn)行改進(jìn),增強(qiáng)其通道特征提取能力。在此基礎(chǔ)上利用空洞卷積擴(kuò)大感受野,,提高大范圍特征提取能力,。試驗(yàn)結(jié)果表明,Motion-EfficientNetV2的參數(shù)量和浮點(diǎn)運(yùn)算量分別為9.3×106和1.31×1010,,優(yōu)于EfficientNetV2,。在TSN-ResNet50、TSN-EfficientNetV2,、C3D以及R3D模型上進(jìn)行對(duì)比試驗(yàn),,本文模型在降低參數(shù)量和浮點(diǎn)運(yùn)算量的同時(shí),使識(shí)別準(zhǔn)確率提高到93.97%,。該研究對(duì)于漁業(yè)裝備智能化升級(jí)和科學(xué)養(yǎng)殖具有推動(dòng)作用,。

    Abstract:

    In order to promote the intelligence of fishery equipment, video streaming-based fish feeding behaviour recognition has received extensive attention in recent years. The model of traditional recognition methods based on video streaming is too complex to be realized on edge computing devices. To address this problem, a lightweight 2D-convolutional motion feature extraction network, Motion-EfficientNetV2, was proposed which can effectively recognize fish feeding behaviour by using video streams as input. The proposed model used EfficientNetV2 as the backbone network, constructed the motion feature extraction module Motion based on TEA and ECANet, and embeded the Motion module into each Fused-MBConv module of EfficientNetV2, in order to give EfficientNetV2 the ability to extract motion features. The MBConv in the EfficientNetV2 network was also improved by using ECANet to enhance its channel feature extraction capability. Null convolution was used in Motion-EfficientNetV2 to expand the receptive field and improve the wide-range feature extraction capability. The experimental results showed that after introducing the designed Motion module and a series of improvements, the number of parameters and FLOPs of Motion-EfficientNetV2 was 9×106 and 1.31×1010, respectively, which were reduced compared with EfficientNetV2. Comparison experiments using the same dataset in the algorithmic models of TSN-ResNet50, TSN-EfficientNetV2, C3D, and R3D, respectively, showed that the present algorithm achieved an accuracy of 93.97% while the number of parameters and FLOPs were lower than the rest of the models. Therefore, the model proposed can effectively identify fish feeding behavior and guide aquaculturists to develop fish feeding strategies.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張錚,沈彥兵,張澤揚(yáng).基于運(yùn)動(dòng)特征提取和2D卷積的魚類攝食行為識(shí)別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):246-253. ZHANG Zheng, SHEN Yanbing, ZHANG Zeyang. Recognition of Feeding Behavior of Fish Based on Motion Feature Extraction and 2D Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):246-253.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼