ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5s模型的奶山羊乳房區(qū)域熱紅外圖像檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD1301800)和國家自然科學(xué)基金項(xiàng)目(32272931)


Thermal Infrared Image Detection Method of Dairy Goat Breast Region Based on Improved YOLO v5s Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    奶山羊乳房區(qū)域的準(zhǔn)確提取是奶山羊非侵入式體溫檢測(cè)的關(guān)鍵,,但受乳房區(qū)域遮擋及熱紅外圖像分辨率不高等因素影響,,其檢測(cè)精度尚待進(jìn)一步提升?;跓峒t外成像技術(shù),,提出了一種基于改進(jìn)YOLO v5s的奶山羊乳房關(guān)鍵部位檢測(cè)方法。通過將原模型Backbone網(wǎng)絡(luò)的部分卷積模塊替換為ShuffleNetV2結(jié)構(gòu),,以達(dá)到降低網(wǎng)絡(luò)部署和訓(xùn)練過程中的參數(shù)量,、實(shí)現(xiàn)輕量化網(wǎng)絡(luò)設(shè)計(jì)的目的。通過在Neck網(wǎng)絡(luò)檢測(cè)頭(Head)前端引入CBAM注意力機(jī)制,,以達(dá)到在降低網(wǎng)絡(luò)復(fù)雜程度的同時(shí)保證奶山羊乳房區(qū)域檢測(cè)精度的目的,。本研究采集了包含完整信息、殘缺信息和邊緣模糊的孕期奶山羊乳房紅外圖像4611幅,,并在部位標(biāo)注后進(jìn)行模型訓(xùn)練,。經(jīng)測(cè)試,,模型精確率為93.7%,召回率為86.1%,,平均精度均值為92.4%,,參數(shù)量為8×105,浮點(diǎn)運(yùn)算量為1.9×109,。與YOLO v5n,、YOLO v5s、YOLO v7-tiny,、YOLO v7,、YOLO v8n和YOLO v8s目標(biāo)檢測(cè)網(wǎng)絡(luò)相比,網(wǎng)絡(luò)的精確率分別提高1.9,、1.2,、1.6、4.3,、3.5,、2.7個(gè)百分點(diǎn),召回率提高3.4,、5.0,、0.1、2.6,、0.9,、1.5個(gè)百分點(diǎn),參數(shù)量降低1.1×106,、6.2×106,、5.2×106、3.6×107,、2.4×106和1.0×107,,浮點(diǎn)運(yùn)算量降低2.6×109、1.4×1010,、1.1×1010,、1.0×1011、6.8×109和2.7×1010,。試驗(yàn)結(jié)果表明,,本研究所提出的網(wǎng)絡(luò)可以實(shí)現(xiàn)奶山羊乳房關(guān)鍵部位的精確檢測(cè),且在不損失檢測(cè)精度的基礎(chǔ)上顯著降低網(wǎng)絡(luò)的參數(shù)量,,有利于網(wǎng)絡(luò)在不同環(huán)境下的部署和使用,,可為奶山羊非接觸式體溫監(jiān)測(cè)系統(tǒng)設(shè)計(jì)提供借鑒。

    Abstract:

    Accurate extraction of the udder region of dairy goats was the key to realize non-invasive temperature detection of dairy goats. Due to the occlusion of breast area and the low quality of thermal infrared image, the detection accuracy needs to be further improved. Based on thermal infrared imaging technology, an improved YOLO v5s based detection method for key parts of milk goat udder was proposed. By replacing some convolutional modules of Backbone network in the original model with ShuffleNetV2 structure, the number of parameters in network deployment and training process was reduced, and the purpose of lightweight network design was realized. By introducing CBAM attention mechanism into the head of the Neck network detection head, the complexity of the network has been reduced and the detection accuracy of the breast region of dairy goats was ensured. Totally 4611 infrared images of breast of pregnant dairy goats containing complete information, incomplete information and blurred edges were collected, and the model was trained after location labeling. After testing, the accuracy of the model was 93.7%, the recall rate was 86.1%, the mean average precision was 92.4%, the number of parameters was 8×105, and the floating point computation was 1.9×109. Compared with the YOLO v5n,YOLO v5s,,YOLO v7-tiny,,YOLO v7,YOLO v8n and YOLO v8s target detection network, the accuracy of this network was increased by 1.9 percentage points,,1.2 percentage points,,1.6 percentage points,4.3 percentage points,,3.5 percentage points and 2.7 percentage points, the recall rate was increased by 3.4 percentage points,,5.0 percentage points,0.1 percentage points,,2.6 percentage points,,0.9 percentage points and 1.5 percentage points, the number of parameters was decreased by 1.1×106,6.2×106,,5.2×106,,3.6×107,2.4×106 and 1.0×107, and floating-point calculations were reduced by 2.6×109,,1.4×1010,,1.1×1010,1.0×1011,,6.8×109 and 2.7×1010, respectively. It met the detection requirements of the key parts of milk goat udder, and significantly reduced the number of parameters of the network without losing the detection accuracy, which was conducive to the deployment and use of the network in different environments, and had reference significance for the design of non-contact temperature monitoring system for milk goat body temperature.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

溫毓晨,趙永杰,蒲六如,鄧洪興,張姝瑾,宋懷波.基于改進(jìn)YOLO v5s模型的奶山羊乳房區(qū)域熱紅外圖像檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):237-245. WEN Yuchen, ZHAO Yongjie, PU Liuru, DENG Hongxing, ZHANG Shujin, SONG Huaibo. Thermal Infrared Image Detection Method of Dairy Goat Breast Region Based on Improved YOLO v5s Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):237-245.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼