ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

柑橘木虱YOLO v8-MC識別算法與蟲情遠程監(jiān)測系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家柑橘產(chǎn)業(yè)技術體系項目(CARS-Citrus),、國家重點研發(fā)計劃項目(2021YFD1400802-4,、2020YFD1000101,、2021YFD1400802-44)和柑橘全程機械化科研基地建設項目(農(nóng)計發(fā)[2017]19號)


Research on Asian Citrus Psyllid YOLO v8-MC Recognition Algorithm and Insect Remote Monitoring System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    柑橘木虱是黃龍病的主要傳播媒介,其發(fā)生與活動可對柑橘果園造成毀滅性后果,。為實現(xiàn)木虱蟲情的高效監(jiān)測,,設計了一種集誘捕拍照、耗材更新,、害蟲識別與結果展示于一體的智能監(jiān)測系統(tǒng),。設計了具備誘蟲膠帶自動更新、蟲情圖像實時獲取功能的誘捕監(jiān)測裝置,;應用選點裁剪,、Mosaic數(shù)據(jù)增強(Mosaic data augmentation,MDA)和CA(Coordinate attention)注意力機制,,改進了YOLO v8木虱識別模型,;開發(fā)了Web和手機APP客戶端,可實現(xiàn)蟲情數(shù)據(jù)的可視化展示與遠程控制,。模型測試階段,,改進后的YOLO v8-MC召回率、F1值及精確率分別達到91.20%,、91%,、90.60%,較基準模型分別提升5.47,、5,、4.64個百分點;遷移試驗中,,模型召回率,、F1值及精確率分別達到88.64%、87%,、84.78%,,且系統(tǒng)工作狀態(tài)良好,滿足野外使用需求,。開發(fā)的智能監(jiān)測系統(tǒng)能有效實現(xiàn)果園木虱蟲情的遠程監(jiān)測,,可為此類蟲害防治管理提供有效手段。

    Abstract:

    The Asian citrus psyllid (ACP) serves as the primary vector for Huanglongbing (HLB), a citrus tree disease with potentially devastating consequences for citrus orchards. In order to achieve efficient monitoring of ACP populations, an intelligent monitoring system capable of insect trapping, pest identification, and result visualization was developed. A monitoring device equipped with an automatic renewal mechanism for the insect trapping tape and real-time image capturing was designed. To improve the performance of the YOLO v8 model for ACP recognition, targeted cropping and Mosaic data augmentation techniques were employed to effectively expand the ACP dataset, addressing issues related to limited sample size and constrained positioning in the datasets. The application of a coordinate attention (CA) mechanism guided the model to comprehensively consider both channel and spatial information, thereby enhancing its ability to accurately locate the target psyllids. Additionally, the Web interface and mobile APP were developed to enable data visualization and remote control. During the model testing phase, the improved YOLO v8-MC achieved significant better performance than the baseline model, reaching 91.20%, 91%, and 90.60% in terms of recall rate, F1 score, and precision, respectively. In the field experiment, the model exhibited a recall rate of 88.64%, an F1 score of 87% and a precision of 84.78%, and the system operated effectively, meeting the requirements for field applications. In conclusion, the intelligent monitoring system developed enabled remote monitoring of ACP populations in orchards, providing an efficient mehtod for the management and control of such pest infestations.

    參考文獻
    相似文獻
    引證文獻
引用本文

李善軍,梁千月,余勇華,陳耀暉,付慧敏,張宏宇.柑橘木虱YOLO v8-MC識別算法與蟲情遠程監(jiān)測系統(tǒng)研究[J].農(nóng)業(yè)機械學報,2024,55(6):210-218. LI Shanjun, LIANG Qianyue, YU Yonghua, CHEN Yaohui, FU Huimin, ZHANG Hongyu. Research on Asian Citrus Psyllid YOLO v8-MC Recognition Algorithm and Insect Remote Monitoring System[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):210-218.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼