ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)業(yè)知識(shí)圖譜技術(shù)研究現(xiàn)狀與展望
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(62303472)


Review of Research Status and Prospects of Agricultural Knowledge Graphs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在當(dāng)前農(nóng)業(yè)信息化的發(fā)展進(jìn)程中,多數(shù)農(nóng)業(yè)子領(lǐng)域面臨著數(shù)據(jù)資源分散,、信息整合難度大,、知識(shí)利用效率低等問題,。作為近年來新興的一種知識(shí)表示技術(shù),知識(shí)圖譜已在部分農(nóng)業(yè)特定領(lǐng)域展現(xiàn)出了強(qiáng)大的語義推理和數(shù)據(jù)整合能力,,同時(shí)幫助一些農(nóng)業(yè)上層應(yīng)用提高了性能,。為系統(tǒng)總結(jié)近年來農(nóng)業(yè)知識(shí)圖譜構(gòu)建與應(yīng)用方面的研究成果,本文首先闡述了知識(shí)圖譜基礎(chǔ)和農(nóng)業(yè)知識(shí)圖譜的構(gòu)建流程,,并從本體建模,、信息抽取、知識(shí)融合以及知識(shí)加工4方面總結(jié)了構(gòu)建農(nóng)業(yè)知識(shí)圖譜所涉及的關(guān)鍵技術(shù),。將當(dāng)前農(nóng)業(yè)知識(shí)圖譜的應(yīng)用分為信息檢索,、問答系統(tǒng)、推薦系統(tǒng),、專家診斷系統(tǒng)和作物預(yù)測(cè)5方面,,并對(duì)這些應(yīng)用工作進(jìn)行了梳理。最后,,對(duì)當(dāng)前農(nóng)業(yè)知識(shí)圖譜的研究現(xiàn)狀進(jìn)行了總結(jié),,并認(rèn)為未來農(nóng)業(yè)知識(shí)圖譜可以從多模態(tài)知識(shí)推理、強(qiáng)時(shí)效性知識(shí)更新,、多語言知識(shí)查詢,、跨領(lǐng)域數(shù)據(jù)融合以及子領(lǐng)域知識(shí)圖譜構(gòu)建等方面加以研究。

    Abstract:

    In the current development process of agricultural informatization, most sub-domains of agriculture face challenges such as dispersed data resources, difficulties in information integration, and low efficiency in knowledge utilization. As an emerging knowledge representation technology in recent years, knowledge graph has demonstrated powerful capabilities in semantic reasoning and data integration in specific agricultural domains. Simultaneously, it has enhanced the performance of some upper-level applications in agriculture. To systematically summarize recent research on the construction and application of knowledge graphs in the agricultural domain, the fundamentals of knowledge graphs and the process of agricultural knowledge graph construction were introduced. Furthermore, it summarized the key technologies involved in constructing an agricultural knowledge graph from four aspects: ontology modeling, information extraction, knowledge fusion, and knowledge processing. Subsequently, an overview of the current applications of agricultural knowledge graphs was provided and discussed in five aspects: information retrieval, question-answering systems, recommendation systems, expert diagnostic systems, and crop prediction. In conclusion, the research status of agricultural knowledge graphs was summarized and it was suggested that future research in agricultural knowledge graphs should explore areas such as multimodal knowledge reasoning, timely knowledge updating, multilingual knowledge queries, cross-domain data fusion, and sub-domain knowledge graph construction.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

侯琛,牛培宇.農(nóng)業(yè)知識(shí)圖譜技術(shù)研究現(xiàn)狀與展望[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):1-17. HOU Chen, NIU Peiyu. Review of Research Status and Prospects of Agricultural Knowledge Graphs[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):1-17.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期:
文章二維碼