ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)ConvNeXt的奶牛行為識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(22327404D),、河北農(nóng)業(yè)大學(xué)精準(zhǔn)畜牧學(xué)科群建設(shè)項(xiàng)目(1090064),、河北省自然科學(xué)基金項(xiàng)目(F2020204003)和國(guó)家自然科學(xué)基金項(xiàng)目(62102130)


Cow Behavior Recognition Method Based on Improved ConvNeXt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    奶牛的動(dòng)作行為(進(jìn)食、躺臥,、站立、行走和甩尾)直接或間接地反映了奶牛的健康及生理狀況,是奶牛疾病監(jiān)測(cè)及感知奶牛異常的關(guān)鍵,,為準(zhǔn)確高效地對(duì)奶牛行為進(jìn)行識(shí)別,,提出了一種融合時(shí)間和空間注意信息的多分支并行的CAFNet(ConvNeXt-ACM-FAM)奶牛行為識(shí)別模型,該模型在卷積網(wǎng)絡(luò)ConvNeXt的基礎(chǔ)上融合非對(duì)稱(chēng)多分支卷積模塊(ACM)和特征注意力模塊(FAM),。首先,,利用ACM劃分通道分支提取特征并保留一部分原始特征,防止信息過(guò)度丟失,。其次,,F(xiàn)AM對(duì)不同通道的特征進(jìn)行融合并引入SimAM注意力機(jī)制,不增加網(wǎng)絡(luò)參數(shù)的同時(shí)增強(qiáng)重要特征的有效提取,。實(shí)驗(yàn)結(jié)果表明,,該方法對(duì)進(jìn)食、躺臥,、站立,、行走和甩尾行為識(shí)別準(zhǔn)確率分別為95.50%、93.72%,、90.26%,、86.43%、89.39%,,平均準(zhǔn)確率為91.06%,,參數(shù)量相較于原模型減少了1.5×106,浮點(diǎn)運(yùn)算量減少了3×108,,相較于其他模型,,本文模型識(shí)別平均準(zhǔn)確率平均提升8.63個(gè)百分點(diǎn),。本文研究成果可為奶牛疾病監(jiān)測(cè)及預(yù)防提供技術(shù)支持。

    Abstract:

    The behaviors of cows, including eating, lying, standing, walking and tailflicking, which directly or indirectly reflects the health and physiological condition of the cows. It is necessary to monitor cow diseases and detect anomalies in cow behavior. In order to achieve the goals, a multi-branch parallel CAFNet (ConvNeXt-ACM-FAM) cow behavior recognition model was proposed by combining temporal and spatial attention information. The model combined an asymmetric multi-branch convolutional module (ACM) and a feature attention module (FAM) on the basis of a ConvNeXt convolutional network. Firstly, ACM was utilized to partition channel branches for feature extraction, and retained some original features to prevent excessive information loss. And ACM can improve the running efficiency of the model. Secondly, FAM fused the features from different channels and introduced the SimAM attention mechanism, which enhanced the efficient extraction of important features without increasing network parameters and improved recognition accuracy. The result of experiment demonstrated that the CAFNet achieved recognition accuracy of the method for eating, lying, standing, walking, and tailflicking was 95.50%, 93.72%, 90.26%, 86.43%, and 89.39%, respectively. And the average recognition accuracy was 91.06%. Compared with the original model, the number of parameters was reduced by 1.5×106, the computational complexity was reduced by 3×108, and the average recognition accuracy was increased by 8.63 percentage points. The results can provide technical support for cow disease monitoring and prevention.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李恩澤,王克儉,司永勝,苑迎春,何振學(xué).基于改進(jìn)ConvNeXt的奶牛行為識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(5):282-289. LI Enze, WANG Kejian, SI Yongsheng, YUAN Yingchun, HE Zhenxue. Cow Behavior Recognition Method Based on Improved ConvNeXt[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):282-289.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-09
  • 出版日期:
文章二維碼