ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SBERT-Attention-LDA與ML-LSTM特征融合的煙草問句意圖識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國煙草總公司云南省煙草公司重點項目(2021530000241012)


Tobacco Interrogative Intent Recognition Based on SBERT-Attention-LDA and ML-LSTM Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對煙草領域中問句意圖識別存在的特征稀疏,、術語繁多和捕捉文本內(nèi)部的語義關聯(lián)困難等問題,提出了一種基于SBERT-Attention-LDA(Sentence-bidirectional encoder representational from transformers-Attention mechanism-Latent dirichlet allocation)與ML-LSTM(Multi layers-Long short term memory)特征融合的問句意圖識別方法,。該方法首先基于SBERT預訓練模型和Attention機制對煙草問句進行動態(tài)編碼,轉換為富含語義信息的特征向量,同時利用LDA模型建模出問句的主題向量,捕捉問句中的主題信息;然后通過更改后的模型級特征融合方法ML-LSTM獲得具有更為完整,、準確問句語義的聯(lián)合特征表示;再使用3通道的卷積神經(jīng)網(wǎng)絡(Convolutional neural network,CNN)提取問句混合語義表示中隱藏特征,輸入到全連接層和Softmax函數(shù)中實現(xiàn)對問句意圖的分類,。基于煙草行業(yè)權威網(wǎng)站上獲取的數(shù)據(jù)集開展了實驗驗證,實驗結果表明,所提方法相比其他幾種深度學習結合注意力機制的方法精確率,、召回率和F1值上有顯著提升,與BERT和ERNIE(Enhanced representation through knowledge integration and embedding)-CNN模型相比提升明顯,F1值分別提升2.07,、2.88個百分點。

    Abstract:

    Aiming at the problems of feature sparsity, terminology and difficulty in capturing semantic associations within the text in question intention recognition in the tobacco domain, a feature fusion method based on sentence-bidirectional encoder representational from transformers-Attention mechanism-latent dirichlet allocation (SBERT-Attention-LDA) and multi layers-long short term memory (ML-LSTM) feature fusion was proposed. The method first dynamically encoded the tobacco question based on the SBERT pre-training model combined with the Attention mechanism and converted it into semantic-rich feature vectors, and at the same time, the topic vector of the question was modelled by using the LDA model to capture the topic information in the question; and then the joint feature representation with more complete and accurate question semantics was obtained by using the modified model-level ML-LSTM feature fusion method; and then the three-layer LSTM and ML-LSTM feature fusion method was used to identify the intention of the question. Then a 3-channel convolutional neural network (CNN) was used to extract the hidden features in the hybrid semantic representation of the question and fed them into the fully connected layer and Softmax function to achieve the classification of the question intent. Compared with the enhanced representation through knowledge integration and embedding (BERT and ERNIE) CNN models, the improvement was obvious (the F1 values were improved by 2.07 percentage points and 2.88 percentage points, respectively), which supported the construction of the Q&A system for tobacco websites.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱波,黎魁,邱蘭,黎博.基于SBERT-Attention-LDA與ML-LSTM特征融合的煙草問句意圖識別方法[J].農(nóng)業(yè)機械學報,2024,55(5):273-281. ZHU Bo, LI Kui, QIU Lan, LI Bo. Tobacco Interrogative Intent Recognition Based on SBERT-Attention-LDA and ML-LSTM Feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):273-281.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-03-08
  • 出版日期:
文章二維碼