ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于選擇性注意力神經(jīng)網(wǎng)絡(luò)的木薯葉病害檢測(cè)算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(20)3172)


Cassava Leaf Disease Detection Algorithm Based on Selective Attention Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了實(shí)現(xiàn)在復(fù)雜非結(jié)構(gòu)環(huán)境下對(duì)木薯葉4種主要病害的高精度檢測(cè),,提出一種基于選擇性注意力機(jī)制的木薯葉病害神經(jīng)網(wǎng)絡(luò)檢測(cè)改進(jìn)算法MAISNet (Multiattention IBN Squareplus neural network),。以V2-ResNet-101為基礎(chǔ)網(wǎng)絡(luò),,先使用多重注意力算法優(yōu)化加權(quán)系數(shù),調(diào)整特征通道的語(yǔ)義表達(dá),,在特征圖中初步構(gòu)建顯著性特征,;然后在殘差單元之后采用實(shí)例批歸一化方法來(lái)抑制特征表達(dá)中的協(xié)變量偏移,在特征圖中構(gòu)建出顯著性語(yǔ)義特征,實(shí)現(xiàn)高質(zhì)量語(yǔ)義特征表達(dá),;最后在殘差分支中采用Squareplus激活函數(shù)替代ReLU激活函數(shù),,保持語(yǔ)義特征在負(fù)數(shù)域的數(shù)值分布,減少特征擬合過(guò)程中的截?cái)嗾`差,。對(duì)比試驗(yàn)結(jié)果顯示,,經(jīng)過(guò)上述改進(jìn)后構(gòu)建出的MAISNet-101神經(jīng)網(wǎng)絡(luò),對(duì)4種常見(jiàn)木薯葉病害檢測(cè)的平均準(zhǔn)確率達(dá)到95.39%,,明顯優(yōu)于目前主流算法EfficientNet-B5和RepVGG-B3g4等,。網(wǎng)絡(luò)提取特征的可視化分析結(jié)果表明,高質(zhì)量木薯葉病害顯著性語(yǔ)義特征,,是提高木薯葉病害檢測(cè)準(zhǔn)確率的關(guān)鍵,。所提出的MAISNet神經(jīng)網(wǎng)絡(luò)模型可以完成實(shí)際場(chǎng)景下木薯葉病害高精度檢測(cè)。

    Abstract:

    To achieve high-precision detection of four major cassava leaf diseases in complex unstructured environments, an improved algorithm for cassava leaf disease neural network detection based on the selective attention mechanism, MAISNet, was proposed. Using V2-ResNet-101 as the base network, the multiattention algorithm was firstly used to optimize the weighting coefficients, adjust the semantic expression of the feature channels, and the semantic feature saliency expression of cassava leaf disease in the feature map was preliminary constructed; then the instance batch normalization method was used after the residual unit to suppress the covariate offset in the feature expression, highlight the target semantic feature expression in the feature map, and realize the high-quality semantic feature expression. Finally, the Squareplus activation function was used to replace the ReLU activation function in the residual branch to maintain the numerical distribution of semantic features in the negative domain, and reduce the truncation errors in the feature fitting process. The results of the comparison test showed that the MAISNet-101 neural network constructed after the above improvement achieved an average accuracy of 95.39% for the detection of four common cassava leaf diseases, which was significantly better than the performance of the mainstream algorithms such as EfficientNet-B5 and RepVGG-B3g4. The results of the visualization and analysis of the extracted features of the network showed that high-quality semantic feature saliency representation of cassava leaf diseases was the key to improve the accuracy of cassava leaf disease detection. The proposed MAISNet neural network model can accomplish high-precision detection of cassava leaf diseases in real scenarios, which can provide technical support for precise drug application.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張家瑜,朱銳,邱威,陳坤杰.基于選擇性注意力神經(jīng)網(wǎng)絡(luò)的木薯葉病害檢測(cè)算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(5):254-262,272. ZHANG Jiayu, ZHU Rui, QIU Wei, CHEN Kunjie. Cassava Leaf Disease Detection Algorithm Based on Selective Attention Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):254-262,272.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-03-12
  • 出版日期:
文章二維碼