ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)FasterNet的輕量化小麥生育期識(shí)別模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31501225),、河南省科技研發(fā)計(jì)劃聯(lián)合基金(優(yōu)勢(shì)學(xué)科培育類)項(xiàng)目(222301420113)和河南省自然科學(xué)基金項(xiàng)目(222300420463、232300420186)


Lightweight Wheat Growth Stage Identification Model Based on Improved FasterNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)階段小麥生育期信息獲取需依靠人工觀測(cè),,效率低,、主觀性強(qiáng)等問題,本文構(gòu)建包含冬小麥越冬期,、返青期,、拔節(jié)期和抽穗期4個(gè)生育期共計(jì)4599幅小麥圖像數(shù)據(jù)集,并提出一種基于FasterNet的輕量化網(wǎng)絡(luò)模型FSST(Fast shuffle swin transformer),,開展4個(gè)關(guān)鍵生育期的智能識(shí)別,。在FasterNet部分卷積的基礎(chǔ)上引入Channel Shuffle機(jī)制,以提升模型計(jì)算速度,。引入Swin Transformer模塊來實(shí)現(xiàn)特征融合和自注意力機(jī)制,用來提升小麥關(guān)鍵生育期識(shí)別準(zhǔn)確率,。調(diào)整整個(gè)模型結(jié)構(gòu),進(jìn)一步降低網(wǎng)絡(luò)復(fù)雜度,,并在訓(xùn)練中引入Lion優(yōu)化器,,加快網(wǎng)絡(luò)模型收斂速度。在自建的數(shù)據(jù)集上進(jìn)行模型驗(yàn)證,,結(jié)果表明,,F(xiàn)SST模型參數(shù)量僅為1.22×107,平均識(shí)別準(zhǔn)確率,、F1值和浮點(diǎn)運(yùn)算量分別為97.22%,、78.54%和3.9×108,,與FasterNet、GhostNet,、ShuffleNetV2和MobileNetV3 4種模型相比,,F(xiàn)SST模型識(shí)別精度更高,運(yùn)算速度更快,,并且識(shí)別時(shí)間分別減少84.04%,、73.74%、72.22%和77.01%,。提出的FSST模型能夠較好地進(jìn)行小麥關(guān)鍵生育期識(shí)別,,并且具有識(shí)別快速精準(zhǔn)和輕量化的特點(diǎn),可以為大田作物生長實(shí)時(shí)監(jiān)測(cè)提供信息技術(shù)支持,。

    Abstract:

    In response to the problems of low efficiency and strong subjectivity in obtaining information about the current stage of wheat development that relies on manual observation, a wheat image dataset consisting of four key growth stages of winter wheat: winterovering stage, green-turning stage, jointing stage, and heading stage, totaling 4599 images were constructed. A lightweight model FSST (fast shuffle swin transformer) based on FasterNet was proposed to carry out intelligent recognition of these four key growth stages. Firstly, based on the partial convolution of FasterNet, the Channel Shuffle mechanism was introduced to improve the computational speed of the model. Secondly, the Swin Transformer module was introduced to achieve feature fusion and self attention mechanism, it can improve the accuracy of identifying key growth stages of wheat. Then the structure of the whole model was adjusted to further reduce the network complexity, and the Lion optimizer was introduced into the training to accelerate the training speed of the model. Finally, model validation on the self-built wheat dataset with four key growth stages was performed. The results showed that the parameter quantity of the FSST model was only 1.22×107, the average recognition accuracy was 97.22%, the F1 score was 78.54%, and the FLOPs was 3.9×108. Compared with that of the FasterNet, GhostNet, ShuffleNetV2 and MobileNetV3 models, the recognition accuracy of the FSST model was higher, the operation speed was faster, and the recognition time was reduced by 84.04%, 73.74%, 72.22% and 77.01%, respectively. The FSST model proposed can effectively identify the key growth stage of wheat, and had the characteristics of fast, accurate, and lightweight recognition. It can provide a reference for optimizing the application of deep learning models in smart agriculture and offerring information technology support for real-time monitoring of field crop growth on resource-constrained mobile devices.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

時(shí)雷,雷鏡楷,王健,楊程凱,劉志浩,席磊,熊蜀峰.基于改進(jìn)FasterNet的輕量化小麥生育期識(shí)別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(5):226-234. SHI Lei, LEI Jingkai, WANG Jian, YANG Chengkai, LIU Zhihao, XI Lei, XIONG Shufeng. Lightweight Wheat Growth Stage Identification Model Based on Improved FasterNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):226-234.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-03-01
  • 出版日期:
文章二維碼