ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合注意力機(jī)制與多尺度信息的葡萄種植區(qū)變化檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601)、陜西省秦創(chuàng)原隊(duì)伍建設(shè)項(xiàng)目(2023-ZDLNY-69)和陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023-YBNY-217)


Change Detection of Grape Growing Areas Based on Integrating Attention Mechanism and Multiscale Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為準(zhǔn)確獲取葡萄空間變化信息,,實(shí)現(xiàn)產(chǎn)業(yè)規(guī)劃和可持續(xù)發(fā)展,,針對(duì)葡萄種植區(qū)布局分散、面積不一,,地物類型復(fù)雜,,相應(yīng)不同時(shí)相影像異質(zhì)性較大,嚴(yán)重影響變化區(qū)域檢測(cè)精度的問題,,提出了一種融合注意力機(jī)制和多尺度信息的變化檢測(cè)模型(Multiscale difference feature capture net, MDFCNet),。在ResNet101主干網(wǎng)絡(luò)的基礎(chǔ)上融合SE(Squeeze and excitation)注意力機(jī)制,提升網(wǎng)絡(luò)對(duì)遙感影像中變化特征提取的能力,,抑制無關(guān)像素干擾,。并且設(shè)計(jì)了交叉差異特征捕獲(Cross difference feature capture,CDFC)模塊,捕獲具有密集上下文信息的差異特征來提升地物類型復(fù)雜情況下的變化檢測(cè)精度,,同時(shí)設(shè)計(jì)了監(jiān)督集成注意力(Supervised ensemble attention,SEA)模塊,,逐層融合低層細(xì)節(jié)紋理特征和高層抽象語義特征來豐富多尺度特征,以此增強(qiáng)網(wǎng)絡(luò)對(duì)布局分散,、面積不一的種植區(qū)的檢測(cè)能力,。在構(gòu)建的寧夏葡萄種植區(qū)變化數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn),結(jié)果表明,,相較于目前主流的SNUNet,、A2Net、DSIFN和ResNet-CD變化檢測(cè)模型,,本文MDFCNet方法檢測(cè)結(jié)果最優(yōu),,相較于性能第2的模型,評(píng)價(jià)指標(biāo)中交并比,、召回率,、F1值和精確率分別提高5.42、5.62、3.48,、0.95個(gè)百分點(diǎn)。通過消融實(shí)驗(yàn)也證明了融合各模塊的有效性,,相較于基礎(chǔ)網(wǎng)絡(luò),,增加3個(gè)模塊使得交并比、召回率,、F1值和精確率分別提高12.9,、5.63、8.64,、11.75個(gè)百分點(diǎn),。本文模型提取出感受野更大的差異特征可為變化檢測(cè)提供豐富的推斷信息,融合的多尺度特征可以有效避免結(jié)果中誤檢測(cè)和漏檢測(cè)問題,,提高了變化區(qū)域的完整性和邊緣細(xì)節(jié)保留,,為背景復(fù)雜的大范圍葡萄種植區(qū)的變化檢測(cè)任務(wù)提供了解決思路。

    Abstract:

    Remote sensing technology for ground change detection has been widely used in the fields of agricultural planting planning and disaster situation assessment. For grapes, which is an important economic crop in China, accurately obtaining its spatial change information is crucial for industrial planning and sustainable development. Nevertheless, the dispersed arrangement of the grape growing areas, their diverse sizes, and the intricate nature of feature types, along with the heterogeneity among different temporal images, collectively contribute to a diminished accuracy in detecting areas of change. Therefore, a change detection model (Multiscale difference feature capture net, MDFCNet) based on attention mechanism and multiscale difference features was proposed.The main structure of the network adopted an encoderdecoder structure, which incorporated the squeeze and excitation (SE) attention module on the basis of ResNet101 backbone network to improve the network’s ability to adequately extract change features from remote sensing images, suppressing interference from extraneous pixels. We also designed the cross difference feature capture (CDFC) module, it captured different features with dense contextual information, thereby improving the accuracy of change detection in the case of complex feature types. While the supervised ensemble attention (SEA) module was designed to enrich multiscale features by fusing low-level detailed texture features and high-level abstract semantic features layer by layer to enhance the network’s ability to detect small planting areas. Comparison and ablation experiments were conducted on the constructed change dataset of grape growing area, which was located within the city of Yinchuan, Ningxia Hui Autonomous Region. The experimental results showed that the MDFCNet method achieved the best detection results compared with the current state-of-the-art change detection methods of SNUNet, A2Net, DSIFN and ResNet-CD. Compared with the model with the 2nd highest performance(A2Net), the evaluation metrics of IoU, recall, F1 value and precision were improved by 5.42, 5.62, 3.48 and 0.95 percentage points, respectively. And the ablation experiments also demonstrated the effectiveness of fusing the modules. Compared with the base network, the addition of the three modules resulted in 12.9, 5.63, 8.64 and 11.75 percentage points increases in the evaluation metrics of IoU, recall, F1 value and precision respectively. The model extracted different features with larger sensory fields to provide rich inferential information for change detection, and the fused multiscale features can effectively avoid the problem of false detection and missed detection in the results. The extracted change areas were more complete and retain more edge detail, providing a solution to the task of change detection for the complex background of the wide range of grape growing areas.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,沈寅威,陽光,孫志同,劉康樂,張二磊.融合注意力機(jī)制與多尺度信息的葡萄種植區(qū)變化檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(5):196-206,234. ZHANG Hongming, SHEN Yinwei, YANG Guang, SUN Zhitong, LIU Kangle, ZHANG Erlei. Change Detection of Grape Growing Areas Based on Integrating Attention Mechanism and Multiscale Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):196-206,234.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-12-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-27
  • 出版日期:
文章二維碼