ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)DeepLabV3+的蕎麥苗期無人機遙感
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1600602-09)和山西省基礎(chǔ)研究計劃項目(202203021212414,、202303021222067)


Segmentation of Buckwheat by UAV Based on Improved Lightweight DeepLabV3+ at Seedling Stage
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對DeepLabV3+語義分割模型計算復(fù)雜度高,、內(nèi)存消耗大、難以在計算力有限的移動平臺上部署等問題,,提出一種改進(jìn)的輕量化DeepLabV3+深度學(xué)習(xí)語義分割算法,,用于實現(xiàn)無人機蕎麥苗期圖像的分割與識別。該算法采用RepVGG(Re-parameterization visual geometry group)與MobileViT(Mobile vision transformer)模塊融合的方式建立主干網(wǎng)絡(luò)實現(xiàn)特征提??;同時,在RepVGG網(wǎng)絡(luò)結(jié)構(gòu)中引入SENet(Squeeze-and-excitation networks)注意力機制,,通過利用通道間的相關(guān)性,,捕獲更多的全局語義信息,保證蕎麥分割的性能,。實驗結(jié)果表明,,與FCN(Fully convolutional networks)、PSPNet(Pyramid scene parsing network),、DenseASPP(Dense atrous spatial pyramid pooling),、DeepLabV3、DeepLabV3+模型相比,,本文提出的改進(jìn)算法在較大程度上降低了模型參數(shù)規(guī)模,,更適合在移動端部署,自建蕎麥苗期分割數(shù)據(jù)集上的語義分割平均像素準(zhǔn)確率(Mean pixel accuracy,,mPA)和平均交并比(Mean intersection over union,,mIoU)分別為97.02%和91.45%,總體參數(shù)量,、浮點運算次數(shù)(Floating-point operations,,F(xiàn)LOPs)和推理速度分別為9.01×106、8.215×1010,、37.83f/s,,綜合表現(xiàn)最優(yōu)。在全尺寸圖像分割中,,訓(xùn)練模型對不同飛行高度的蕎麥苗期分割的mPA和mIoU均能滿足要求,,也具有較好的分割能力和推理速度,該算法可為后期蕎麥補種,、施肥養(yǎng)護和長勢監(jiān)測等提供重要技術(shù)支持,,進(jìn)而促進(jìn)小雜糧產(chǎn)業(yè)智能化發(fā)展。

    Abstract:

    In view of the problems of high computational complexity, large memory consumption, and difficulty in deployment on mobile platforms with limited computing power in DeepLabV3+ segmentation model, an improved lightweight DeepLabV3+ algorithm was proposed to realize the segmentation and recognition of buckwheat by UAV at seedling stage. The algorithm adopted the fusion of re-parameterization visual geometry group (RepVGG) and mobile vision transformer (MobileViT) modules to establish the backbone network for feature extraction. At the same time, the squeeze-and-excitation networks (SENet) attention mechanism was introduced into the RepVGG network structure to capture more global semantic information by using the correlation between channels, and ensure the performance of buckwheat segmentation. Experimental results showed that compared with fully convolutional networks (FCN), pyramid scene parsing network (PSPNet), dense atrous spatial pyramid pooling (DenseASPP), DeepLabV3, and DeepLabV3+ models, the improved algorithm proposed greatly reduced the model parameters, making it more suitable for deployment on mobile terminals. The mean pixel accuracy (mPA) and mean intersection over union (mIoU) on the selfbuilt buckwheat segmentation dataset were 97.02% and 91.45%, the overall parameters, floatingpoint operations (FLOPs) and inference speed were 9.01×106, 8.215×1010 and 37.83 f/s, respectively, with the best performance. In the full-size image segmentation, the mPA and mIoU for buckwheat segmentation can meet the requirements at different flight heights, which had good segmentation ability and inference speed. The algorithm can provide technical support for the later buckwheat seed replacement, fertilization maintenance, and growth monitoring, and promote the intelligent development of small and coarse grain industry.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

武錦龍,吳虹麒,李浩,雷興鵬,宋海燕.基于改進(jìn)DeepLabV3+的蕎麥苗期無人機遙感[J].農(nóng)業(yè)機械學(xué)報,2024,55(5):186-195. WU Jinlong, WU Hongqi, LI Hao, LEI Xingpeng, SONG Haiyan. Segmentation of Buckwheat by UAV Based on Improved Lightweight DeepLabV3+ at Seedling Stage[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):186-195.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-03-18
  • 出版日期:
文章二維碼