ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多模型融合策略的溫室番茄光合速率預測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

遼寧省教育廳面上項目(LJKMZ20221035、LJKZ0683),、遼寧省科技廳面上項目(2023-MS-212),、國家自然科學基金項目(32001415、61673281)和遼寧省自然基金指導計劃項目(2019-ZD-0720)


Prediction of Photosynthetic Rate of Greenhouse Tomatoes Based on Multi-model Fusion Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    溫室番茄光合速率的準確預測對于番茄的生長和產(chǎn)量評估具有重要意義,。然而,,由于溫室環(huán)境的復雜性和多變性,傳統(tǒng)的光合速率預測模型往往難以滿足精準預測的需求,。因此,,為了進一步提高預測模型的準確性和穩(wěn)定性,,本研究提出了一種基于多模型融合策略的溫室番茄光合速率預測方法。首先,,采集溫濕度,、光照強度、CO2濃度不同組合下的番茄光合速率,,構建樣本集,,并采用五折交叉驗證法(Cross-Validation)對數(shù)據(jù)進行預處理。以預處理的數(shù)據(jù)為基礎,,分別基于粒子群優(yōu)化支持向量機(PSO-SVR),、布谷鳥優(yōu)化極限學習機(CS-ELM)和北方蒼鷹優(yōu)化高斯過程回歸(NGO-GPR)算法建立番茄光合速率預測模型對光合速率進行初步預測,然后采用Stacking算法通過基于決策樹的集成學習模型(XGBoost)組合各基礎模型的預測結果,,進而實現(xiàn)多模型融合,。仿真分析結果表明,與單一預測模型相比,,基于多模型融合的光合速率預測模型充分發(fā)揮了各基礎模型的優(yōu)勢,,可以進一步提高光合速率預測的準確性和穩(wěn)定性,該模型驗證集MAE為0.5697μmol/(m2·s),RMSE為0.7214μmol/(m2·s),。因此,,本文提出的方法在溫室作物光合速率預測方面具有一定的優(yōu)勢,可為溫室番茄等作物光環(huán)境優(yōu)化調(diào)控提供一定的理論基礎和技術支撐,。

    Abstract:

    Accurately predicting the photosynthetic rate of greenhouse tomatoes is crucial for evaluating their growth and yield. However, due to the complexity and variability of the greenhouse environments, traditional photosynthetic rate prediction models often fail to meet the demand of precise prediction. To address this issue and enhance the accuracy and stability of prediction model, a multi-model fusion strategy for predicting the photosynthetic rate of greenhouse tomatoes was proposed. Initially, the photosynthetic rate of tomato was collected under various combinations of temperature, humidity, light intensity, and carbon dioxide concentration, and a sample set was constructed. The data was preprocessed by using five-fold cross-validation method. Based on preprocessed data, prediction models for tomato photosynthetic rate were established by using particle swarm optimization-support vector regression (PSO-SVR), cuckoo search optimization-extreme learning machine (CS-ELM), and northern goshawk optimization-Gaussian process regression (NGO-GPR) algorithms, and preliminary predictions were made. Next, the Stacking algorithm was used to combine the predictions of the basic models through training an ensemble tree meta-model (XGBoost), thereby achieving multi-model fusion. The results of simulation analysis demonstrated that compared with a single prediction model, the photosynthetic rate prediction model based on multi-model fusion effectively utilized the advantages of the basic models, enhancing the accuracy and stability of predicting photosynthetic rate. The MAE of the validation set for the model was 0.5697μmol/(m2·s), and the RMSE was 0.7214μmol/(m2·s). Therefore, the method proposed had significant advantages in predicting the photosynthetic rate of greenhouse crops, and can provide theoretical basis and technical support for the management and control of the light environment of greenhouse tomatoes and other crops.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉潭,朱洪銳,袁青云,王永剛,張大鵬,丁小明.基于多模型融合策略的溫室番茄光合速率預測方法[J].農(nóng)業(yè)機械學報,2024,55(4):337-345. LIU Tan, ZHU Hongrui, YUAN Qingyun, WANG Yonggang, ZHANG Dapeng, DING Xiaomin. Prediction of Photosynthetic Rate of Greenhouse Tomatoes Based on Multi-model Fusion Strategy[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):337-345.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼