ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進COF-YOLO v8n的油茶果靜態(tài)與動態(tài)檢測計數(shù)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家林業(yè)和草原局應急科技項目(202202-3),、江蘇省農(nóng)業(yè)科技自主創(chuàng)新基金項目(CX(22)3099),、江蘇省現(xiàn)代農(nóng)機裝備與技術(shù)推廣項目(NJ2021-18)和江蘇省重點研發(fā)計劃項目(BE20211016-2)


Camellia oleifera Fruit Static and Dynamic Detection Counting Based on Improved COF-YOLO v8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對自然環(huán)境下油茶果存在嚴重遮擋,、近景色,、小目標等現(xiàn)象,使用YOLO網(wǎng)絡存在檢測精度低,、漏檢現(xiàn)象嚴重等問題,,提出對YOLO v8n網(wǎng)絡進行改進。首先使用MPDIOU作為YOLO v8n的損失函數(shù),,有效解決因為果實重疊導致的漏檢問題,;其次調(diào)整網(wǎng)絡,向其中加入小目標檢測層,,使網(wǎng)絡能夠關(guān)注小目標油茶以及被樹葉遮擋的油茶,;最后使用SCConv作為特征提取網(wǎng)絡,既能兼顧檢測精度又能兼顧檢測速度,。改進COF-YOLO v8n網(wǎng)絡精確率,、召回率、平均精度均值分別達到97.7%,、97%、99%,,比未改進的YOLO v8n分別提高3.2,、4.8、2.4個百分點,,其中嚴重遮擋情況下油茶檢測精確率,、召回率、平均精度均值分別達到 95.9%、95%,、98.5%,,分別比YOLO v8n提高4.0、9.1,、4.6個百分點,。因此改進后COF-YOLO v8n網(wǎng)絡能夠明顯提高油茶在嚴重遮擋、近景色,、小目標均存在情況下的識別精度,,減小油茶的漏檢。此外,,模型能夠?qū)崿F(xiàn)動,、靜態(tài)輸入條件下油茶果計數(shù)。動態(tài)計數(shù)借鑒DeepSORT算法的多目標跟蹤思想,,將改進后COF-YOLO v8n的識別輸出作為DeepSORT的輸入,,實現(xiàn)油茶果實的追蹤計數(shù)。所得改進模型具有很好的魯棒性,,且模型簡單可以嵌入到邊緣設備中,,不僅可用于指導自動化采收,還可用于果園產(chǎn)量估計,,為果園物流分配提供可靠借鑒,。

    Abstract:

    Aiming at the problems of severe occlusion, close view and small target Camellia oleifera in Camellia oleifera fruit, the original YOLO v8n network was selected to improve the phenomenon of low detection accuracy and serious missed detection phenomenon by using the original YOLO network. MPDIOU was used as the loss function of YOLO v8n to effectively solve the problem of missed detection caused by fruit overlap. Adjusting the network and adding a small target detection layer to it,so that the network can pay attention to small target Camellia oleifera and Camellia oleifera obscured by leaves;SCConv was used to replace the C2f in the original YOLO v8n, so that the network can balance both detection accuracy and detection speed. The P, R and mAP of the improved COF-YOLO v8n network reached 97.7%, 97% and 99% respectively, which were 3.2 percentages, 4.8 percentages and 2.4 percentages higher than P, R and mAP of the unimproved YOLO v8n, among which the P, R and mAP of Camellia oleifera reached 95.9%, 95% and 98.5% under severe occlusion, respectively, which was 4.0 percentages, 9.1 percentages and 4.6 percentages higher than that of the original YOLO v8n. The COF-YOLO v8n network can significantly improve the recognition accuracy of Camellia oleifera under the conditions of severe occlusion, close vie, and small targets. In addition, the model can realize the counting of Camellia oleifera under dynamic and static input conditions. Dynamic counting draws on the multi-target tracking idea of DeepSORT algorithm, and took the recognition output of COF-YOLO v8n as the input of DeepSORT to realize the recognition and counting of Camellia oleifera fruits, and used the reduced resolution Camellia oleifera data to simulate the target situation in the field environment and restored the real picking environment. The resulting improved model had good robustness and simple model can be embedded in the robotic arm, which can not only be used to guide future automated harvesting, but also for yield estimation of orchards, providing reliable reference for orchard logistics distribution.

    參考文獻
    相似文獻
    引證文獻
引用本文

王金鵬,何萌,甄乾廣,周宏平.基于改進COF-YOLO v8n的油茶果靜態(tài)與動態(tài)檢測計數(shù)方法[J].農(nóng)業(yè)機械學報,2024,55(4):193-203. WANG Jinpeng, HE Meng, ZHEN Qianguang, ZHOU Hongping. Camellia oleifera Fruit Static and Dynamic Detection Counting Based on Improved COF-YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):193-203.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼