ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

自適應(yīng)融合氣體-光譜雙模態(tài)信息花生產(chǎn)地溯源方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

吉林省科技發(fā)展計(jì)劃項(xiàng)目(YDZJ202301ZYTS406)和國(guó)家自然科學(xué)基金項(xiàng)目(31772059)


Adaptive Fusion of Gas Spectral Bimodal Information for Peanut Origin Traceability
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    不同產(chǎn)地的花生質(zhì)量差異明顯,貼優(yōu)質(zhì)產(chǎn)地標(biāo)簽販賣劣質(zhì)花生的現(xiàn)象時(shí)有發(fā)生,。本文基于電子鼻與高光譜系統(tǒng)的無(wú)損檢測(cè)技術(shù),,提出雙模態(tài)融合特征注意力(Bimodal fusion feature attention,DFFA)并設(shè)計(jì)DFFA-Net以實(shí)現(xiàn)花生質(zhì)量辨識(shí),。首先,,利用電子鼻與高光譜系統(tǒng)獲取7個(gè)不同產(chǎn)地花生氣體信息和光譜信息,花生自內(nèi)而外的氣體信息可以表征其整體宏觀質(zhì)量,,不同化學(xué)鍵及官能團(tuán)的光譜信息差異可以表征其整體微觀質(zhì)量,;然后,提出DFFA以自適應(yīng)融合氣體-光譜雙模態(tài)信息并關(guān)注影響分類性能的重要特征,,并結(jié)合消融實(shí)驗(yàn)證明了雙模態(tài)信息融合的必要性,;最后,,基于提出的DFFA模塊,,經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化得到DFFA-Net以實(shí)現(xiàn)不同產(chǎn)地花生質(zhì)量的有效辨識(shí),。通過消融分析,、多注意力機(jī)制分類性能對(duì)比,DFFA-Net獲得了最佳分類性能:準(zhǔn)確率為98.10%,、精確率為98.15%,、召回率為97.88%,,驗(yàn)證了DFFA-Net在花生產(chǎn)地辨識(shí)中的有效性,。提出的DFFA-Net結(jié)合電子鼻和高光譜系統(tǒng)實(shí)現(xiàn)了不同產(chǎn)地花生的質(zhì)量辨識(shí),,為花生市場(chǎng)質(zhì)量監(jiān)督提供了有效的技術(shù)方法。

    Abstract:

    The quality difference of peanuts from different origins is significant, and it is common to see inferior peanuts being sold with high-quality labels. Therefore, it is crucial to provide a peanut origin traceability method. A bimodal fusion feature attention (DFFA) was proposed based on electronic nose and hyperspectral system for non-destructive detection, and DFFA-Net was designed to achieve peanut quality identification. Firstly, the gas information and spectral information of peanuts from seven different origins were obtained by using an electronic nose and hyperspectral system. The gas information from the inside out of peanuts can characterize their overall macroscopic quality, while the spectral information differences of different chemical bonds and functional groups can characterize their overall microscopic quality. Then, DFFA was proposed to adaptively fuse the gas-spectral dual-modal information and focus on important features that affected classification performance. The necessity of fusing dual-modal information was verified through ablation experiments. Finally, based on the proposed DFFA module, DFFA-Net was designed with optimized network structure to achieve effective identification of peanut quality from different origins. Through ablation analysis and comparison of classification performance with multiple attention mechanisms, DFFA-Net achieved the best classification performance: accuracy of 98.10%, precision of 98.15%, and recall of 97.88%. The effectiveness of DFFA-Net in peanut origin identification research was validated. In conclusion, the proposed DFFA-Net, combining electronic nose and hyperspectral system, effectively realized the quality identification of peanuts from different origins and provided an effective technical method for quality supervision in the peanut market.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

石巖,任宇琪,王思遠(yuǎn),殷崇博,門洪.自適應(yīng)融合氣體-光譜雙模態(tài)信息花生產(chǎn)地溯源方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(4):176-183,,203. SHI Yan, REN Yuqi, WANG Siyuan, YIN Chongbo, MEN Hong. Adaptive Fusion of Gas Spectral Bimodal Information for Peanut Origin Traceability[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):176-183,,203.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼