ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機(jī)遙感植被指數(shù)優(yōu)選的覆膜冬小麥估產(chǎn)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1900700)和陜西省重點研發(fā)計劃項目(2022NY-114)


Yield Estimation of Mulched Winter Wheat Based on UAV Remote Sensing Optimized by Vegetation Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為進(jìn)一步提高無人機(jī)遙感估產(chǎn)的精度,,本研究以2021—2022年的覆膜冬小麥為研究對象,,對返青期、拔節(jié)期,、抽穗期和灌漿期的多光譜影像進(jìn)行覆膜背景剔除,,并優(yōu)選最佳遙感窗口期,基于最優(yōu)植被指數(shù)構(gòu)建覆膜冬小麥估產(chǎn)模型,。結(jié)果表明,,利用支持向量機(jī)監(jiān)督分類法剔除覆膜背景后冠層反射率更接近真實值,抽穗期和灌漿期的估產(chǎn)精度更高,。將不同生育期的植被指數(shù)與產(chǎn)量進(jìn)行相關(guān)性分析發(fā)現(xiàn),最佳遙感窗口期為抽穗期,?;谥鸩交貧w和全子集回歸法優(yōu)選最優(yōu)植被指數(shù)時發(fā)現(xiàn),基于逐步回歸法篩選變量為MCARI,、MSR,、EVI2、NDRE,、VARI,、NDGI、NGBDI,、ExG時產(chǎn)量反演模型精度最高,。此外,利用偏最小二乘法,、人工神經(jīng)網(wǎng)絡(luò)和隨機(jī)森林3種機(jī)器學(xué)習(xí)法構(gòu)建的產(chǎn)量反演模型中,,基于逐步回歸法的隨機(jī)森林模型的反演精度最高,,R2為0.82,RMSE為0.84t/hm2,。該研究可為提高遙感估產(chǎn)精度,、實現(xiàn)農(nóng)業(yè)生產(chǎn)精細(xì)化管理提供技術(shù)支持。

    Abstract:

    In order to further improve the accuracy of UAV remote sensing yield estimation, taking the mulched winter wheat from 2021 to 2022 as the research object, the coating background of the multispectral images at the greening stage, jointing stage, ear pumping stage and filling stage was removed, and the best remote sensing window period was selected, and a mulched winter wheat yield estimation model was constructed based on the optimal vegetation index. The results showed that the canopy reflectivity was closer to the true value after removing the coating background by the support vector machine supervised classification method, and the yield estimation accuracy of the ear stage and the grouting stage was higher. The correlation analysis between vegetation index and yield at different growth stages showed that the best remote sensing window period was the ear extraction period. When the optimal vegetation index was selected based on stepwise regression and full subset regression, it was found that the yield inversion model had the highest accuracy when the screening variables were MCARI, MSR, EVI2, NDRE, VARI, NDGI, NGBDI, ExG based on stepwise regression. In addition, among the yield inversion models constructed by three machine learning methods, partial least squares, artificial neural network and random forest, the random forest model based on stepwise regression method had the highest inversion accuracy, with an R2 of 0.82 and an RMSE of 0.84t/hm2. The research result can provide technical support for improving the accuracy of remote sensing yield estimation and realizing the fine management of agricultural production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韋春宇,杜婭丹,程智楷,周智輝,谷曉博.基于無人機(jī)遙感植被指數(shù)優(yōu)選的覆膜冬小麥估產(chǎn)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(4):146-154,,175. WEI Chunyu, DU Yadan, CHENG Zhikai, ZHOU Zhihui, GU Xiaobo. Yield Estimation of Mulched Winter Wheat Based on UAV Remote Sensing Optimized by Vegetation Index[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):146-154,,175.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼