ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于自適應RBF神經網絡具有模型不確定性的四旋翼無人機指定時間預設性能控制方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

海南省重點研發(fā)計劃項目(ZDYF2024XDNY152)、廣東省企業(yè)科技特派員專項(GDKTP2021008500)、湛江市科技計劃項目(2022A105&2020A05004&2021A05194)、廣東省教育廳重點項目(2021ZDZX1041)和深圳市科技計劃項目(JCYJ20220530162014033)


Adaptive RBF Neural Networks for Appointed-time Performance Control of Quadcopter UAVs with Model Uncertainty
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    四旋翼無人機具有強耦合和欠驅動的特點,在飛行過程中很容易受到外界干擾,進而影響整個無人機系統(tǒng)的穩(wěn)定性和精度。為此,提出了一種基于RBF神經網絡的指定時間預設性能約束控制策略。首先,針對四旋翼無人機的不確定數學模型難以精確建立,并且在執(zhí)行任務過程中存在外部未知擾動問題,提出了一種基于指定時間預設性能控制方法,將四旋翼無人機的軌跡跟蹤問題轉換為對位置子系統(tǒng)和姿態(tài)子系統(tǒng)的期望指令跟蹤問題;其次,在設計控制器過程中,為了解決“微分爆炸”問題產生的濾波器誤差,引入一種新型濾波誤差補償方法,通過RBF神經網絡逼近外部未知擾動,并將預測結果補償給控制器以提高軌跡跟蹤的魯棒性。最后,應用仿真模擬方法驗證無人機控制系統(tǒng)穩(wěn)定性和性能優(yōu)勢,通過飛行試驗驗證,微風聚攏環(huán)境下實際飛行軌跡與仿真模擬結果趨于一致,自主軌跡跟蹤起降位置偏差小于1cm,證明了所提出算法的有效性。

    Abstract:

    Quadrotor UAVs are characterized by strong coupling and underdrive, and are easily affected by external interference during flight, which in turn affects the stability and accuracy of the whole UAV system. Aiming at this problem, a specified-time preset performance constraint control policy based on RBF neural network was proposed. Firstly, in view of the difficulty of establishing an accurate mathematical model for the uncertain mathematical model of the quadrotor UAV and the existence of external unknown disturbances during the execution of the mission, a control method based on the specified time preset performance constraints was proposed, and the trajectory tracking problem of the quadrotor UAV was transformed into the desired command tracking problem for the position subsystem and the attitude subsystem;in view of the design of the controller, in order to solve the problem of the “position subsystem”, the RBF neural network was used to design the controller. Secondly, a compensation system was introduced to solve the filter error caused by the “differential explosion” problem during the controller design process. Finally, the unknown external perturbations were compensated by RBF neural network approximation and the predicted results were compensated to the controller to improve the robustness. Finally, the simulation method is used to verify the stability and performance advantages of UAV control system, flight tests were conducted to verify that the actual flight trajectory in a breeze gathering environment tended to be consistent with the simulation results. The deviation of the autonomous trajectory tracking takeoff and landing position was less than 1cm, demonstrating the effectiveness of the proposed algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

張園,鄭鴻基,劉海濤,韋麗嬌,沈德戰(zhàn),趙振華.基于自適應RBF神經網絡具有模型不確定性的四旋翼無人機指定時間預設性能控制方法[J].農業(yè)機械學報,2024,55(4):64-73. ZHANG Yuan, ZHENG Hongji, LIU Haitao, WEI Lijiao, SHEN Dezhan, ZHAO Zhenhua. Adaptive RBF Neural Networks for Appointed-time Performance Control of Quadcopter UAVs with Model Uncertainty[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):64-73.

復制
相關視頻

分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期:
文章二維碼