ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于熵產(chǎn)理論的多級(jí)液力透平能量耗散機(jī)理分析
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(52169019),、甘肅省杰出青年基金項(xiàng)目(20JR10RA203)和中國博士后科學(xué)基金項(xiàng)目(2022M712676)


Analysis of Energy Dissipation Mechanism of Multistage Hydraulic Turbine Based on Entropy Production Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    液力透平作為一種液體余壓能回收裝置,,在小水電建設(shè)和能量回收領(lǐng)域得到廣泛應(yīng)用,但其內(nèi)部能量損失特性不清,。以兩級(jí)徑流式液力透平為研究對(duì)象,,基于熵產(chǎn)理論和Omega渦識(shí)別準(zhǔn)則分析了各過流部件內(nèi)能量耗散機(jī)理。結(jié)果表明:速度脈動(dòng)和壁面效應(yīng)是能量損失的主要來源,,設(shè)計(jì)工況下二者總占比為98.03%,。葉輪和導(dǎo)葉是透平內(nèi)能量耗散的主要區(qū)域;小流量工況,,葉輪損失占比較高,;大流量工況下,導(dǎo)葉損失占比較高,。葉輪內(nèi)的能量損失源于葉片前緣分離渦,、吸力面回流渦以及葉片尾緣渦等不穩(wěn)定流動(dòng)現(xiàn)象,而相對(duì)液流角與葉片進(jìn)口安放角的不匹配是導(dǎo)致葉輪內(nèi)產(chǎn)生不穩(wěn)定流動(dòng)的根本原因,;在導(dǎo)葉和導(dǎo)葉Ⅱ-反導(dǎo)葉中,,不同流量下導(dǎo)致其能量耗散的因素基本保持一致,葉片前緣失速渦和流動(dòng)分離等劣態(tài)流動(dòng)引起的動(dòng)量交換是導(dǎo)致能量損失的主要原因,。環(huán)形吸水室內(nèi)流動(dòng)的非對(duì)稱性導(dǎo)致導(dǎo)葉Ⅰ各流道內(nèi)熵產(chǎn)率分布不均勻,,而導(dǎo)葉Ⅱ-反導(dǎo)葉通過正導(dǎo)葉的整流減小了沖擊效應(yīng),各流道內(nèi)熵產(chǎn)率分布均勻且高熵區(qū)較小,。

    Abstract:

    As a liquid residual pressure energy recovery device, hydraulic turbine is widely used in the field of small hydropower construction and energy recovery, but its internal energy loss characteristics are unclear. The two-stage radial hydraulic turbine was taken as the research object. Based on the entropy production theory, the energy loss in each flow component was quantitatively analyzed, and the energy dissipation mechanism in the turbine was further revealed by combining the Omega vortex identification criterion and flow field distribution. The results showed that velocity pulsation and wall effect were the primary sources of energy dissipation. The total proportion of the two was 98.03% under the design condition. The impeller and the guide vane were the main areas of energy dissipation in the turbine; the impeller loss accounted for a higher percentage in the small flow condition, while the guide vane loss accounted for a higher percentage in the large flow condition. The energy loss in the impeller originated from the unstable flow phenomena such as vortex separation at the leading edge of the blade, return vortex at the suction surface, and vortex at the trailing edge of the blade, and the matching of the relative liquid flow angle and the angle of placement of the inlet of the blade was the fundamental reason for the unstable flow in the impeller; in the guide vane Ⅰ and the guide vane Ⅱ-anti-guide vane, the factors leading to the dissipation of their energy at different flow rates were basically the same, and the poor flow such as the stagnation vortex at the leading edge of the blade and the flow separation. The momentum exchange caused by the blade leading edge stall vortex and flow separation was the main cause of energy loss. Due to the asymmetry of the flow inside the annular suction chamber, the entropy yield distribution in each channel of the guide vane Ⅰ was not uniform, while the guide vane Ⅱ-anti-guide vane reduced the shock effect through the rectification of the positive guide vane, and the entropy yield distribution in each channel was uniform and the high entropy area was small.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王曉暉,蔣虎忠,苗森春,白小榜,祁炳.基于熵產(chǎn)理論的多級(jí)液力透平能量耗散機(jī)理分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(3):162-172. WANG Xiaohui, JIANG Huzhong, MIAO Senchun, BAI Xiaobang, QI Bing. Analysis of Energy Dissipation Mechanism of Multistage Hydraulic Turbine Based on Entropy Production Theory[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):162-172.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-17
  • 出版日期:
文章二維碼