Abstract:In response to the difficulties in resource utilization of machineharvested residual film mixtures, and the fact that the residual film mixtures processed by the existing shredding and kneading devices do not satisfy the palatability of larvae of white-starred golden tortoise, a residual film mixture crushing and kneading device was designed, processing of residual film mixtures to meet the palatability of white-starred golden tortoise larvae using crushing and kneading techniques. The device was mainly composed of crushing device, conveying device and silk kneading device, etc. The structural and working parameters of each component were determined through kinematic and dynamic analysis of the operation process of the residual film mixture crushing and silk kneading device. In order to verify the operational performance of the residual film mixture crushing and kneading device, a three-factor, three-level quadratic regression response surface experiment was conducted by using the grinding roller speed, kneading roller speed, and kneading roller gap as experimental factors, and the residual film crushing qualification rate, cotton stem crushing length qualification rate, and cotton stem kneading rate as experimental indicators. A regression model was established to analyze the impact of each factor on the operational performance of the residual film mixture crushing and kneading device, and parameter optimization and experimental verification were carried out. The experimental results showed that the main and secondary factors affecting the qualified rate of residual film crushing and the qualified rate of cotton straw crushing length were the speed of the crushing roller, the gap between the kneading rollers, and the speed of the kneading roller. The main and secondary order of factors affecting the cotton straw kneading rate was the gap between kneading rollers, speed of kneading rollers, and speed of crushing rollers. The optimized optimal working parameters were: crushing roller speed of 13.0r/min, kneading roller speed of 60.0r/min, kneading gap of 1.6mm, and the average values of residual film crushing qualification rate, cotton stalk crushing length qualification rate and cotton stalk kneading rate were 90.4%, 92.6% and 92.2%, respectively, which were the same as the theoretical optimization value, with the relative error of no more than 2.0%, the research results can provide reference for the design of residual film mixture crushing and kneading device.