ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于ASTUKF的分布式農(nóng)業(yè)車輛路面參數(shù)辨識方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范與推廣項目(NJ2019-29)和國家重點(diǎn)研發(fā)計劃項目(2016YFD0701003)


Road Parameters Identification Method for Distributed Agricultural Vehicle Based on ASTUKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對分布式驅(qū)動農(nóng)業(yè)車輛在路面參數(shù)辨識過程中,,因路面環(huán)境變化出現(xiàn)的狀態(tài)模型誤差和時變噪聲,,導(dǎo)致辨識結(jié)果發(fā)散的問題,提出了基于自適應(yīng)強(qiáng)跟蹤無跡卡爾曼濾波(Adaptive strong tracking unscented Kalman filter, ASTUKF)的辨識方法,。與傳統(tǒng)內(nèi)燃機(jī)農(nóng)業(yè)車輛相比,,分布式驅(qū)動可以直接獲取驅(qū)動輪的狀態(tài)信息,結(jié)合含有峰值附著系數(shù)和極限滑轉(zhuǎn)率的μ-s曲線模型,,建立了無跡卡爾曼濾波(Unscented Kalman filter, UKF)辨識算法的狀態(tài)方程和量測方程,。同時,將強(qiáng)跟蹤濾波(Strong tracking filter, STF)和自適應(yīng)濾波(Adaptive filter, AF)引入辨識算法,,用以提高對多變環(huán)境的識別精度和魯棒性,,并采用奇異值分解(Singular value decomposition, SVD)解決了迭代過程中出現(xiàn)的非正定矩陣的問題。仿真試驗(yàn)結(jié)果表明,,在突變噪聲環(huán)境工況下,,ASTUKF辨識結(jié)果可以快速收斂至目標(biāo)值附近,且不受突變噪聲的影響,,各驅(qū)動輪峰值附著系數(shù)估計結(jié)果的平均絕對誤差(Mean absolute error, MAE)分別為0.0144,、0.0267、0.0144,、0.0267,,極限滑轉(zhuǎn)率估計結(jié)果的MAE分別為0.0025,、0.0028、0.0025,、0.0028,。實(shí)車試驗(yàn)表明,在已耕地和未耕地的試驗(yàn)路面上,,ASTUKF辨識結(jié)果的均值95%置信區(qū)間能夠匹配測量值,,整車的附著系數(shù)辨識結(jié)果為0.4061(未耕地)、0.3991(已耕地),,極限滑轉(zhuǎn)率辨識結(jié)果0.1484(未耕地),、0.3600(已耕地),可為分布式電動農(nóng)業(yè)車輛作業(yè)參數(shù)感知提供理論參考,。

    Abstract:

    A method utilizing the adaptive strong tracking unscented Kalman filter (ASTUKF) was proposed to address the issue of divergent identification results caused by state model errors and time-varying noise resulting from changes in road environments during the terrain parameters identification of distributed drive agricultural vehicles. Compared with the traditional internal combustion engine agricultural vehicles, distributed drive agricultural vehicles can directly obtain state information of the driving wheel. And combining the μ-s model which contained adhesion coefficient and limit slip ratio, a state function and a measurement function of unscented Kalman filter (UKF) identification algorithm were established. At the same time, strong tracking filter (STF) and adaptive filter (AF) were introduced into the identification algorithm to improve identification accuracy and robustness against the changing environment, and singular value decomposition (SVD) was used to solve the problem of non-positive definite matrix in iterative process. The simulation test showed that under the condition of abrupt noise environment, the identification result of ASTUKF can quickly converge to target value, which was not affected by abrupt noise. Mean absolute errors (MAE) of the adhesion coefficient estimation results of each driving wheel were 0.0144, 0.0267, 0.0144 and 0.0267, respectively, and MAE of the limit slip ratio estimation results were 0.0025, 0.0028, 0.0025 and 0.0028, respectively. The real vehicle test showed that the 95% confidence interval of average identification result of ASTUKF can match the measured value on test road of cultivated and uncultivated road. The identification results of adhesion coefficient of the whole vehicle were 0.4061 (uncultivated road) and 0.3991 (cultivated road), and the identification results of limit slip ratio were 0.1484 (uncultivated road) and 0.3600 (cultivated road), which can provide a theoretical reference for the operation parameter perception of distributed electric agricultural vehicles.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫晨陽,周俊,賴國梁.基于ASTUKF的分布式農(nóng)業(yè)車輛路面參數(shù)辨識方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(2):401-414. SUN Chenyang, ZHOU Jun, LAI Guoliang. Road Parameters Identification Method for Distributed Agricultural Vehicle Based on ASTUKF[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):401-414.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼