ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量化高效層聚合網(wǎng)絡(luò)的黃花成熟度檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(12375050),、山西省教育科學(xué)“十四五”規(guī)劃課題項目(GH-220178),、山西省基礎(chǔ)研究計劃項目(202303021211330)、山西省研究生實踐創(chuàng)新項目(2023SJ290),、山西大同大學(xué)基礎(chǔ)科研基金項目(2022K1),、山西大同大學(xué)研究生科研創(chuàng)新項目(2023CX07)和山西大同市科技計劃項目(2023015)


Maturity Detection Method for Hemerocallis citrina baroni Based on Lightweight and Efficient Layer Aggregation Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對黃花傳統(tǒng)人工識別效率低,辨識標(biāo)準(zhǔn)不統(tǒng)一的問題,,提出基于輕量化和高效層聚合過渡網(wǎng)絡(luò)的黃花成熟度識別方法LSEB YOLO v7,。首先,引入輕量化卷積對高效層聚合網(wǎng)絡(luò)和過渡模塊進(jìn)行輕量化處理,,減少模型計算量,。其次,在特征提取與特征融合網(wǎng)絡(luò)之間增加通道注意力機制,,提升模型檢測性能,。最后,在特征融合網(wǎng)絡(luò)中,,優(yōu)化通道信息融合方式,,使用雙向特征金字塔網(wǎng)絡(luò)替換Concatenate,增加信息融合通道,,持續(xù)提升模型性能,。實驗結(jié)果表明:與原始模型相比,在黃花成熟度檢測中,,改進(jìn)后的LSEB YOLO v7模型參數(shù)量和浮點運算量分別減少約2.0×106和7.7×109,。訓(xùn)練時長由8.025h降低至7.746h,模型體積壓縮約4MB。同時,,訓(xùn)練精確率和召回率分別提升約0.64個百分點和0.14個百分點,,[email protected][email protected]:0.95分別提升約1.84個百分點和1.02個百分點。此外,,調(diào)和均值性能保持不變,,均為84.00%。LSEB YOLO v7算法可均衡模型復(fù)雜性與性能,,為黃花成熟度檢測和智能化采摘設(shè)備提供技術(shù)支持,。

    Abstract:

    To address the problems of low efficiency of traditional manual identification and inconsistent identification standards, a ripening identification method for Hemerocallis citrina baroni based on lightweight and efficient layer aggregation network LSEB YOLO v7 was proposed. Firstly, lightweight convolution was introduced to lighten the efficient layer aggregation network and transition module to reduce the model computation. Secondly, the channel attention mechanism was added between the feature extraction and feature fusion networks to improve the model detection performance. Finally, in the feature fusion network, the channel information fusion method was optimized, and the bi-directional feature pyramid network was used to replace concatenate to increase the information fusion channels and continuously improve the model performance. The experimental results showed that compared with the original algorithm, in the Hemerocallis citrina baroni maturity detection, the number of parameters and floating-point operations of the improved LSEB YOLO v7 algorithm were reduced by about 2.0×106 and 7.7×109, respectively, and the training time was reduced from 8.025h to 7.746h, and the model volume was compressed by about 4MB. Meanwhile, the training precision and recall were improved by about 0.64 percentage and 0.14 percentage, respectively. The [email protected] and [email protected]:0.95 were improved by about 1.84 percentages and 1.02 percentages, respectively. In addition, the harmonized mean remained unchanged at 84.00%. It was evident that the proposed LSEB YOLO v7 algorithm solved the problem of the paradox between model complexity and performance, and provided technical support for intelligent ripening and harvesting inspection equipment for Hemerocallis citrina baroni.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳利剛,陳樂,周倩,史建華,馬宇波.基于輕量化高效層聚合網(wǎng)絡(luò)的黃花成熟度檢測方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(2):268-277. WU Ligang, CHEN Le, ZHOU Qian, SHI Jianhua, MA Yubo. Maturity Detection Method for Hemerocallis citrina baroni Based on Lightweight and Efficient Layer Aggregation Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):268-277.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼