ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于亞像素定位的圖像邊緣檢測(cè)策略研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(U20A20332)


Image Edge Detection Strategy Based on Sub-pixel Location
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)圖像處理與計(jì)算機(jī)視覺(jué)技術(shù)中低對(duì)比度,、邊緣模糊圖像的邊緣檢測(cè)問(wèn)題,參考局部極值與梯度方向兩種因素,,并結(jié)合圖像邊緣方向趨勢(shì),,提出了一種單像素邊緣跟蹤策略。相較于應(yīng)用廣泛的Canny算法,,該跟蹤策略無(wú)需設(shè)置全局閾值,,實(shí)現(xiàn)方式更為簡(jiǎn)潔、高效,;提取的圖像邊緣連續(xù),、平滑、完整,,并有效地減少了圖像邊緣的冗余像素,,進(jìn)而提升了圖像后續(xù)處理的效率,;邊緣跟蹤方向抗干擾性強(qiáng),具有較強(qiáng)的魯棒性,。為了減小檢測(cè)的圖像邊緣與真實(shí)圖像邊緣之間的偏差,、提高圖像邊緣檢測(cè)的精度,參考邊緣像素點(diǎn)的相鄰區(qū)域灰度,,以邊緣像素點(diǎn)的梯度分布為依據(jù)對(duì)該像素點(diǎn)進(jìn)行亞像素定位,。經(jīng)實(shí)驗(yàn)驗(yàn)證,,經(jīng)過(guò)亞像素優(yōu)化的圖像邊緣檢測(cè)策略可用于檢測(cè)邊緣模糊,、對(duì)比度低的圖像,檢測(cè)的圖像邊緣完整,、連續(xù)且平滑,。該策略有效地消除了程序運(yùn)算中引入的截?cái)嗾`差,提升了圖像邊緣檢測(cè)精度,,且適用于亮度5~100000lx的高動(dòng)態(tài)成像場(chǎng)景中,。

    Abstract:

    Image edge detection is a technique that extracts mutation information from images and is widely used in the fields of image processing and computer vision. The effectiveness of image edge detection directly affects the accuracy of subsequent region information extraction, target recognition, and pose measurement. Taking into account two factors: local extremum and gradient direction, and combining with the trend of image edge direction, a single-pixel edge tracking strategy was proposed for the edge detection problem of low contrast and edge blurred images. Compared with the widely used Canny algorithm, this tracking strategy did not require setting a global threshold, and its implementation was more concise and efficient. The extracted image edges were continuous, smooth, and complete, effectively reducing redundant pixels at the image edges, thereby improving the efficiency of subsequent image processing. Edge tracking direction had strong anti-interference ability and robustness. In order to reduce the deviation between the detected image edge and the real image edge, and improve the accuracy of image edge detection, the adjacent gray values of edge pixels were referred to, and the gradient distribution of edge pixels was used as the basis for sub-pixel localization of that pixel. Through experimental verification, the sub-pixel optimized image edge detection strategy can be used to detect images with blurred edges and low contrast. The detected image edges were complete, continuous, and smooth. This strategy effectively eliminated truncation errors introduced in program operations, improved the accuracy of image edge detection, which was suitable for high dynamic imaging scenes with a brightness range of 5~100000lx.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉浩,任宏,趙丁選,孫海超,姜金辰,姜瑞凱.基于亞像素定位的圖像邊緣檢測(cè)策略研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(2):242-248,294. LIU Hao, REN Hong, ZHAO Dingxuan, SUN Haichao, JIANG Jinchen, JIANG Ruikai. Image Edge Detection Strategy Based on Sub-pixel Location[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):242-248,,294.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼