ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)田耕整載荷六維力傳感器結(jié)構(gòu)優(yōu)化與解耦研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2301302-5),、財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-05)和西藏自治區(qū)重大科技專項(xiàng)(XZ202101ZD0004-04)


Structural Optimization and Decoupling of Six Dimensional Force Sensor for Farmland Tillage Load
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對農(nóng)田耕整載荷大、測量精度低等問題,,在經(jīng)典十字梁結(jié)構(gòu)基礎(chǔ)上,,設(shè)計(jì)了一種輻梁式六維力傳感器,可同時(shí)測量力和力矩,,通過仿真方法對傳感器結(jié)構(gòu)進(jìn)行了優(yōu)化,,確定了應(yīng)變梁長、寬,、高分別為9,、10、6mm,;分析了傳感器結(jié)構(gòu)在載荷下的應(yīng)變能力,,確定了應(yīng)變片貼片位置。對傳感器開展了靜態(tài)標(biāo)定試驗(yàn),,基于標(biāo)定數(shù)據(jù)采用改進(jìn)型XGBoost(Extreme gradient boosting)機(jī)器學(xué)習(xí)網(wǎng)絡(luò)對力信號(hào)進(jìn)行解耦,,并與常規(guī)網(wǎng)絡(luò)進(jìn)行比對。試驗(yàn)結(jié)果表明,,改進(jìn)型XGBoost模型在X,、Y、Z方向力和力矩6種加載方式的測試集決定系數(shù)R2P分別達(dá)到0.9804,、0.9418,、0.9434,、0.9868、0.9969,、0.9822,預(yù)測效果較好,,避免了陷入局部最優(yōu)解,。改進(jìn)型XGBoost模型在六維加載力、力矩的R2P,、測試集平均絕對誤差(MAEP)均明顯優(yōu)于隨機(jī)森林模型,、傳統(tǒng)多元線性回歸,相較于傳統(tǒng)多元線性回歸方式,,六維加載力,、力矩的R2P分別提升22.57%、20.99%,、23.32%,、26.27%、26.05%,、18.72%,。基于機(jī)器學(xué)習(xí)的解耦算法可明顯減少耦合誤差的影響,,提高傳感器的測量精度, 為農(nóng)機(jī)優(yōu)化提供了技術(shù)支撐,。

    Abstract:

    Aiming at the problems of large plowing load and low measurement accuracy, a six dimensional force sensor of radial beam type was designed on the basis of classical cross beam structure, which could measure force and moment at the same time. The sensor structure was optimized by simulation method, and the dimension length, width and height of strain beam were determined to be 9mm,10mm and 6mm, respectively. The strain capacity of the sensor structure under load was analyzed, and the position of the strain gauge patch was determined. Based on the calibration data, the improved XGBoost (extreme gradient boosting) machine learning network was used to decouple the force signal. The improved XGBoost model achieved R2P (determination coefficient of test set) of 0.9804, 0.9418, 0.9434, 0.9868, 0.9969, and 0.9822 in six loading modes of force and torque in X, Y and Z directions, respectively. The prediction performance was good, avoiding getting stuck in local optimal solutions. And then compared with the conventional network, the R2P and MAEP (average absolute error of test set) of the improved XGBoost model in the six dimensional force loading direction were significantly better than that of the random forest model and the traditional multiple linear regression. Compared with the traditional multiple linear regression method, the R2P of the six dimensional loading force/moment was increased by 22.57%, 20.99%, 23.32%, 26.27%, 26.05% and 18.72%, respectively. Machine learning based decoupling algorithms could significantly reduce the impact of coupling errors and improve the measurement accuracy of sensors and provide technical support for optimizing agricultural machinery.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳偉,張曉,袁棟,朱繼平,陳小兵,曹光喬.農(nóng)田耕整載荷六維力傳感器結(jié)構(gòu)優(yōu)化與解耦研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(2):28-35,89. CHEN Wei, ZHANG Xiao, YUAN Dong, ZHU Jiping, CHEN Xiaobing, CAO Guangqiao. Structural Optimization and Decoupling of Six Dimensional Force Sensor for Farmland Tillage Load[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):28-35,,89.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼