ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于POE模型的工業(yè)機(jī)器人運(yùn)動(dòng)學(xué)參數(shù)二次辨識(shí)方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51905258)、中國(guó)博士后科學(xué)基金項(xiàng)目(2019M650095)和南京工程學(xué)院校級(jí)科研基金項(xiàng)目(TB202317032)


Quadratic Identification Method of Kinematic Parameters of Industrial Robots Based on POE Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)工業(yè)機(jī)器人在高度制造領(lǐng)域精度不高的問(wèn)題,,本文提出了一種基于POE模型的工業(yè)機(jī)器人運(yùn)動(dòng)學(xué)參數(shù)二次辨識(shí)方法,。闡述了基于指數(shù)積(Product of exponential,POE)模型的運(yùn)動(dòng)學(xué)誤差模型構(gòu)建方法,,并建立基于POE誤差模型的適應(yīng)度函數(shù),;為實(shí)現(xiàn)高精度的參數(shù)辨識(shí),提出了一種二次辨識(shí)方法,,先利用改進(jìn)灰狼優(yōu)化算法(Improved grey wolf optimizer, IGWO)實(shí)現(xiàn)運(yùn)動(dòng)學(xué)參數(shù)誤差的粗辨識(shí),,初步將Staubli TX60型機(jī)器人的平均位置誤差和平均姿態(tài)誤差分別從(0.648mm,0.212°)降低為(0.457mm,,0.166°),;為進(jìn)一步提高機(jī)器人的精度性能,再通過(guò)LM(Levenberg-Marquard)算法進(jìn)行參數(shù)誤差的精辨識(shí),,最終將Staubli TX60型機(jī)器人平均位置誤差和平均姿態(tài)誤差進(jìn)一步降低為(0.237mm,,0.063°),機(jī)器人平均位置誤差和平均姿態(tài)誤差分別降低63.4%和70.2%,。為了驗(yàn)證上述二次辨識(shí)方法的穩(wěn)定性,,隨機(jī)選取5組辨識(shí)數(shù)據(jù)集和驗(yàn)證數(shù)據(jù)集進(jìn)行POE誤差模型的參數(shù)誤差辨識(shí),結(jié)果表明提出的二次辨識(shí)方法能夠穩(wěn)定,、精確地辨識(shí)工業(yè)機(jī)器人運(yùn)動(dòng)學(xué)參數(shù)誤差,。

    Abstract:

    Aiming at the problem of insufficient precision performance of industrial robots in the high-end manufacturing field, a quadratic identification method of kinematic parameters of industrial robots based on POE model was proposed. Firstly, the construction method of the POE kinematic error model was presented. The fitness function based on the POE kinematic error model was established for kinematics identification. Secondly, a quadratic identification method was proposed to realize the parameter identification with high precision. At first, the improved grey wolf optimizer algorithm was applied to realize the primary identification of kinematic errors. The average comprehensive position error and average comprehensive attitude error of the Staubli TX60 robot were reduced from (0.648mm,0.212°) to (0.457mm,0.166°) respectively. In order to further improve the accuracy performance of the robot, the accurate identification of kinematic errors was carried out through the LM (Levenberg-Marquard) algorithm. The average comprehensive position error and average comprehensive attitude error of the Staubli TX60 robot were reduced to (0.237 mm, 0.063°). The average comprehensive position error and average comprehensive attitude error were reduced by 63.4% and 70.2%. Finally, in order to verify the stability of the above quadratic identification method, five different sets of identification datasets and validation datasets were randomly selected for the parameter error identification of the POE error model. The results showed that the proposed quadratic identification method was able to stably and accurately identify the kinematic parameter errors of industrial robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

喬貴方,杜寶安,張穎,田榮佳,劉娣,劉漢忠.基于POE模型的工業(yè)機(jī)器人運(yùn)動(dòng)學(xué)參數(shù)二次辨識(shí)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):419-425. QIAO Guifang, DU Baoan, ZHANG Ying, TIAN Rongjia, LIU Di, LIU Hanzhong. Quadratic Identification Method of Kinematic Parameters of Industrial Robots Based on POE Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):419-425.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-26
  • 出版日期:
文章二維碼