ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

設施生菜光合和蒸騰速率影響因素分析與預測模型構建
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

科技部中央引導地方項目(XZ202202YD0002C)


Analysis and Model Construction of Factors Affecting Photosynthesis and Transpiration Rates in Facility Lettuce
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    光合速率及蒸騰速率是植物的2個重要生理指標,。在全人工環(huán)境下,,選取意大利生菜作為對象,設計并開展多環(huán)境變量對生菜光合速率及蒸騰速率影響的嵌套實驗,,得到環(huán)境因子對生菜光合速率及蒸騰速率的影響規(guī)律,,應用神經(jīng)網(wǎng)絡構建生菜幼苗期光合速率及蒸騰速率預測模型。針對幼苗期生菜,,選擇溫度,、相對濕度、光子通量密度(Photosynthetic photon flux density, PPFD)及CO2濃度共4個環(huán)境影響因素,,采用隨機森林方法對數(shù)據(jù)進行相關性分析,。結果表明,與蒸騰速率相關性由大到小的因素依次為CO2濃度,、溫度,、相對濕度、PPFD,,與光合速率相關性由大到小的因素依次為CO2濃度,、PPFD、溫度,、相對濕度,;采用枚舉法確定隱藏層節(jié)點數(shù)和訓練函數(shù),通過遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的初始權值和閾值,,構建GA-BP神經(jīng)網(wǎng)絡生理指標預測模型,。應用測試數(shù)據(jù)對模型進行驗證,光合速率及蒸騰速率預測值與實測值的決定系數(shù)分別為0.96212,、0.97944,,均方根誤差(RMSE)分別為2.9832μmol/(m2·s)、0.0014358mol/(m2·s),,表明GA-BP神經(jīng)網(wǎng)絡在模型精度和迭代次數(shù)方面性能顯著提高,。研究結果可為設施生菜生產(chǎn)環(huán)境調(diào)控提供有效依據(jù)。

    Abstract:

    Photosynthesis rate and transpiration rate are crucial physiological indicators in plants. In a controlled artificial environment, Italian lettuce was chosen as the research subject. A nested experiment was conducted to investigate the multivariate impact on the photosynthesis rate and transpiration rate of lettuce. The study unveiled patterns of environmental factors affecting these rates, leading to the construction of a neural network prediction model for photosynthesis rate and transpiration rate during the seedling phase of lettuce. For lettuce seedlings, four factors were selected: temperature, relative humidity, photosynthetic photon flux density (PPFD), and environmental CO2 concentration. Using the random forest method, a correlation analysis of the data was carried out. The results revealed that factors strongly correlated with the transpiration rate, in descending order, were CO2 concentration, temperature, relative humidity, and PPFD. Meanwhile, for the photosynthesis rate, the factors were CO2 concentration, PPFD, temperature, and relative humidity. A GA-BP neural network physiological indicator prediction model was developed, employing the enumeration method to determine the number of hidden layer nodes and training functions, and optimizing the initial weights and thresholds of the BP neural network through a genetic algorithm. Testing with actual data, the determination coefficients of predicted and actual values for photosynthesis rate and transpiration rate were 0.96212 and 0.97944, respectively, with root mean square errors (RMSE) of 2.9832μmol/(m2·s) and 0.0014358mol/(m2·s). This demonstrated the significantly improved performance of the GA-BP neural network in terms of model accuracy and iteration times. In summary, the research result can provide a valuable basis for environmental regulation in facility lettuce production.

    參考文獻
    相似文獻
    引證文獻
引用本文

張增林,楊杰,郭常江,韓文霆,楊振超.設施生菜光合和蒸騰速率影響因素分析與預測模型構建[J].農(nóng)業(yè)機械學報,2024,55(1):339-349. ZHANG Zenglin, YANG Jie, GUO Changjiang, HAN Wenting, YANG Zhenchao. Analysis and Model Construction of Factors Affecting Photosynthesis and Transpiration Rates in Facility Lettuce[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):339-349.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-27
  • 出版日期:
文章二維碼