ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于層級(jí)多標(biāo)簽的農(nóng)業(yè)病蟲害問(wèn)句分類方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣州市基礎(chǔ)與應(yīng)用基礎(chǔ)研究項(xiàng)目(202201010184),、國(guó)家自然科學(xué)基金項(xiàng)目(72101091)和教育部人文社會(huì)科學(xué)研究一般項(xiàng)目(20YJC740067)


Hierarchical Multi-label Classification of Agricultural Pest and Disease Interrogative Questions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著信息化技術(shù)的快速發(fā)展,,農(nóng)戶通過(guò)線上智能農(nóng)業(yè)問(wèn)答系統(tǒng)解決線下農(nóng)業(yè)病蟲害問(wèn)題已成為趨勢(shì),。問(wèn)句分類在問(wèn)答系統(tǒng)中發(fā)揮著至關(guān)重要的作用,,其準(zhǔn)確性直接決定了最終返回答案的正確性,。傳統(tǒng)的單標(biāo)簽文本分類模型難以直接準(zhǔn)確捕捉到農(nóng)業(yè)病蟲害問(wèn)句的確切意圖,,而且由于缺乏大規(guī)模公開的農(nóng)業(yè)病蟲害問(wèn)句語(yǔ)料,使得現(xiàn)有研究具有一定的難度,。為此,,本文基于樹狀結(jié)構(gòu)構(gòu)建了一個(gè)農(nóng)業(yè)病蟲害問(wèn)句層級(jí)分類體系,由問(wèn)句模糊性向精確性逐層細(xì)化分類,,旨在克服農(nóng)業(yè)問(wèn)句的語(yǔ)義復(fù)雜性,;此外,引入對(duì)抗訓(xùn)練方法,,通過(guò)構(gòu)建對(duì)抗樣本并將其與原始樣本一同用于大規(guī)模語(yǔ)言模型的訓(xùn)練,,以提高模型泛化能力,同時(shí)緩解了因語(yǔ)料不足而產(chǎn)生的問(wèn)題,。通過(guò)對(duì)真實(shí)問(wèn)答語(yǔ)料庫(kù)的實(shí)驗(yàn)驗(yàn)證,,本文提出的方法能夠提升農(nóng)業(yè)病蟲害問(wèn)句的分類性能,,可為農(nóng)業(yè)病蟲害自動(dòng)問(wèn)答系統(tǒng)提供有效的問(wèn)句意圖識(shí)別。

    Abstract:

    With the rapid advancement of information technology, it has become a trend for farmers to address offline agricultural issues through online intelligent question-and-answer systems. Question classification plays a crucial role in question-and-answer systems, as its accuracy directly determines the correctness of the final answers. Traditional single-label text classification models often struggle to accurately capture the precise intent of agricultural queries. Moreover, the lack of large-scale publicly available query datasets about agricultural pest and disease poses a significant challenge to existing research methods. To address these challenges, a hierarchical classification framework for queries about agricultural pest and disease was established based on a tree-like structure. This framework progressively refined the classification from the ambiguity of queries towards precision, aiming to overcome the semantic complexity of agricultural queries. Additionally, adversarial training method was introduced. By constructing adversarial samples and incorporating them into the training of large-scale language models, the model's generalization capabilities were enhanced, while mitigating issues arising from limited training data. Experimental validation conducted on real question-and-answer corpora demonstrated that the proposed method significantly enhanced the classification performance of queries about agricultural pest and disease. The research result can provide an effective means of identifying the intent behind agricultural queries, thereby offering support for advancing agricultural informatization.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韋婷婷,葛曉月,熊俊濤.基于層級(jí)多標(biāo)簽的農(nóng)業(yè)病蟲害問(wèn)句分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):263-269,435. WEI Tingting, GE Xiaoyue, XIONG Juntao. Hierarchical Multi-label Classification of Agricultural Pest and Disease Interrogative Questions[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):263-269,435.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-02
  • 出版日期:
文章二維碼