ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MobileNetV3Small-ECA的水稻病害輕量級(jí)識(shí)別研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61502236)和江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(21)3059)


Lightweight Identification of Rice Diseases Based on Improved ECA and MobileNetV3Small
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)水稻病害的輕量化識(shí)別與檢測(cè),,使用ECA注意力機(jī)制改進(jìn)MobileNetV3Small模型,,并使用共享參數(shù)遷移學(xué)習(xí)對(duì)水稻病害進(jìn)行智能化輕量級(jí)識(shí)別和檢測(cè)。在PlantVillage數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,,將預(yù)訓(xùn)練得到的共享參數(shù)遷移到對(duì)水稻病害識(shí)別模型上微調(diào)優(yōu)化,。在開(kāi)源水稻病害數(shù)據(jù)集上進(jìn)行試驗(yàn)測(cè)試,試驗(yàn)結(jié)果表明,,在非遷移學(xué)習(xí)下,,識(shí)別準(zhǔn)確率達(dá)到97.47%,在遷移學(xué)習(xí)下識(shí)別準(zhǔn)確率達(dá)到99.92%,,同時(shí)參數(shù)量減少26.69%,。其次,通過(guò)Grad-CAM進(jìn)行可視化,,本文方法與其他注意力機(jī)制CBAM和SENET相比,,ECA模塊生成的結(jié)果與圖像中病斑的位置和顏色更加一致,表明網(wǎng)絡(luò)可以更好地聚焦水稻病害的特征,,并且通過(guò)可視化和各水稻病害分析了誤分類原因,。本文方法實(shí)現(xiàn)了水稻病害識(shí)別模型的輕量化,使其能夠在移動(dòng)設(shè)備等資源受限的場(chǎng)景中部署,,達(dá)到快速、高效,、便攜的目的,。同時(shí)開(kāi)發(fā)了基于Android的水稻病害識(shí)別系統(tǒng),方便于在邊緣端進(jìn)行水稻病害識(shí)別分析,。

    Abstract:

    In order to realize the lightweight identification and detection of rice diseases, the ECA attention mechanism was used to improve the MobileNetV3Small model, and shared parameter transfer learning was used to carry out intelligent lightweight identification and detection of rice diseases. Pre-training was performed on the PlantVillage dataset, and the shared parameters obtained from the pre-training were transferred to the rice disease recognition model for fine-tuning and optimization. Experiments were on the open-source rice disease dataset. The experimental results showed that the recognition accuracy rate reached 97.47% under non-transfer learning, and 99.92% under transfer learning, while reducing the number of parameters by 26.69%. Secondly, the Grad-CAM was used for visualization. Compared with other attention mechanisms CBAM and SENET, the results generated by the ECA module were more consistent with the position and color of the disease spots in the image, indicating that the network can better focus on rice diseases. Characteristics, and the causes of misclassification were analyzed through visualization and each rice disease. The proposed method realized the lightweight of the rice disease recognition model, so that it can be deployed in resource-constrained scenarios such as mobile devices, and achieved the purpose of fast, efficient and portable. At the same time, an Android-based rice disease identification system was developed, which can facilitate the identification and analysis of rice diseases at the edge.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁培森,歐陽(yáng)柳江,翟肇裕,田永超.基于MobileNetV3Small-ECA的水稻病害輕量級(jí)識(shí)別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):253-262. YUAN Peisen, OUYANG Liujiang, ZHAI Zhaoyu, TIAN Yongchao. Lightweight Identification of Rice Diseases Based on Improved ECA and MobileNetV3Small[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):253-262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-27
  • 出版日期:
文章二維碼