ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于遙感多參數(shù)和VMD-GRU的冬小麥單產(chǎn)估測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(42171332)


Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and VMD-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為充分挖掘時間序列遙感參數(shù)的時序信息和趨勢信息,,并進一步提升冬小麥估產(chǎn)精度,,以陜西省關中平原為研究區(qū)域,選取與冬小麥長勢密切相關的生育時期尺度的條件植被溫度指數(shù)(VTCI),、葉面積指數(shù)(LAI)和光合有效輻射吸收比率(FPAR)作為遙感參數(shù),構(gòu)建耦合變分模態(tài)分解(VMD)與門控循環(huán)單元(GRU)神經(jīng)網(wǎng)絡的估產(chǎn)模型,。應用VMD算法將各個時間序列遙感參數(shù)分解為多組平穩(wěn)的本征模態(tài)函數(shù)(IMF)分量,,選取與原始時間序列遙感參數(shù)高度相關的IMF分量進行特征重構(gòu),并將重構(gòu)特征作為GRU網(wǎng)絡的輸入,,以構(gòu)建冬小麥組合估產(chǎn)模型,。結(jié)果表明,VMD-GRU組合估產(chǎn)模型決定系數(shù)為0.63,,均方根誤差為448.80kg/hm2,,平均相對誤差為8.14%,相關性達到極顯著水平(P<0.01),,其精度優(yōu)于單一估產(chǎn)模型精度,,表明該組合估產(chǎn)模型能夠提取非平穩(wěn)時間序列數(shù)據(jù)的多尺度、多層次特征,,并充分挖掘冬小麥各生育時期遙感參數(shù)間的內(nèi)在聯(lián)系,,獲得準確單產(chǎn)估測結(jié)果的同時提升了估產(chǎn)模型的可解釋性,。

    Abstract:

    In order to fully exploit the time-series information and trend information of time-series remotely sensed parameters and further improve the yield estimation accuracy of winter wheat, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR), which were closely related to the growth and development of winter wheat, were selected as remotely sensed parameters, and a neural network was constructed based on variational mode decomposition (VMD) and gated recurrent unit (GRU). The VMD algorithm was applied to decompose each remotely sensed parameter series into multiple sets of intrinsic mode function (IMF) components, and the IMF components that were highly correlated with the original remotely sensed parameter series were selected for feature reconstruction, and the reconstructed features were used as the input of the GRU network to develop a combined model for yield estimation of winter wheat. The results showed that the VMD-GRU model for yield estimation had a coefficient of determination of 0.63, root mean squared error of 448.80kg/hm2, and mean relative error of 8.14%, with a highly significant correlation level (P<0.01), and its accuracy was better than that of the single model for yield estimation, indicating that the combined model for yield estimation can extract multi-scale and multilevel features of non-stationary time series and fully explore the internal linkage between remotely sensed parameters in each growth stage of winter wheat to obtain accurate yield estimation results and improve interpretability of model for yield estimation.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭豐瑋,王鵬新,劉峻明,李紅梅.基于遙感多參數(shù)和VMD-GRU的冬小麥單產(chǎn)估測[J].農(nóng)業(yè)機械學報,2024,55(1):164-174,185. GUO Fengwei, WANG Pengxin, LIU Junming, LI Hongmei. Yield Estimation of Winter Wheat Based on Multiple Remotely Sensed Parameters and VMD-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):164-174,185.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-16
  • 出版日期:
文章二維碼